266 research outputs found

    Bridging the gap between reconstruction and synthesis

    Get PDF
    Aplicat embargament des de la data de defensa fins el 15 de gener de 20223D reconstruction and image synthesis are two of the main pillars in computer vision. Early works focused on simple tasks such as multi-view reconstruction and texture synthesis. With the spur of Deep Learning, the field has rapidly progressed, making it possible to achieve more complex and high level tasks. For example, the 3D reconstruction results of traditional multi-view approaches are currently obtained with single view methods. Similarly, early pattern based texture synthesis works have resulted in techniques that allow generating novel high-resolution images. In this thesis we have developed a hierarchy of tools that cover all these range of problems, lying at the intersection of computer vision, graphics and machine learning. We tackle the problem of 3D reconstruction and synthesis in the wild. Importantly, we advocate for a paradigm in which not everything should be learned. Instead of applying Deep Learning naively we propose novel representations, layers and architectures that directly embed prior 3D geometric knowledge for the task of 3D reconstruction and synthesis. We apply these techniques to problems including scene/person reconstruction and photo-realistic rendering. We first address methods to reconstruct a scene and the clothed people in it while estimating the camera position. Then, we tackle image and video synthesis for clothed people in the wild. Finally, we bridge the gap between reconstruction and synthesis under the umbrella of a unique novel formulation. Extensive experiments conducted along this thesis show that the proposed techniques improve the performance of Deep Learning models in terms of the quality of the reconstructed 3D shapes / synthesised images, while reducing the amount of supervision and training data required to train them. In summary, we provide a variety of low, mid and high level algorithms that can be used to incorporate prior knowledge into different stages of the Deep Learning pipeline and improve performance in tasks of 3D reconstruction and image synthesis.La reconstrucció 3D i la síntesi d'imatges són dos dels pilars fonamentals en visió per computador. Els estudis previs es centren en tasques senzilles com la reconstrucció amb informació multi-càmera i la síntesi de textures. Amb l'aparició del "Deep Learning", aquest camp ha progressat ràpidament, fent possible assolir tasques molt més complexes. Per exemple, per obtenir una reconstrucció 3D, tradicionalment s'utilitzaven mètodes multi-càmera, en canvi ara, es poden obtenir a partir d'una sola imatge. De la mateixa manera, els primers treballs de síntesi de textures basats en patrons han donat lloc a tècniques que permeten generar noves imatges completes en alta resolució. En aquesta tesi, hem desenvolupat una sèrie d'eines que cobreixen tot aquest ventall de problemes, situats en la intersecció entre la visió per computador, els gràfics i l'aprenentatge automàtic. Abordem el problema de la reconstrucció i la síntesi 3D en el món real. És important destacar que defensem un paradigma on no tot s'ha d'aprendre. Enlloc d'aplicar el "Deep Learning" de forma naïve, proposem representacions novedoses i arquitectures que incorporen directament els coneixements geomètrics ja existents per a aconseguir la reconstrucció 3D i la síntesi d'imatges. Nosaltres apliquem aquestes tècniques a problemes com ara la reconstrucció d'escenes/persones i a la renderització d'imatges fotorealistes. Primer abordem els mètodes per reconstruir una escena, les persones vestides que hi ha i la posició de la càmera. A continuació, abordem la síntesi d'imatges i vídeos de persones vestides en situacions quotidianes. I finalment, aconseguim, a través d'una nova formulació única, connectar la reconstrucció amb la síntesi. Els experiments realitzats al llarg d'aquesta tesi demostren que les tècniques proposades milloren el rendiment dels models de "Deepp Learning" pel que fa a la qualitat de les reconstruccions i les imatges sintetitzades alhora que redueixen la quantitat de dades necessàries per entrenar-los. En resum, proporcionem una varietat d'algoritmes de baix, mitjà i alt nivell que es poden utilitzar per incorporar els coneixements previs a les diferents etapes del "Deep Learning" i millorar el rendiment en tasques de reconstrucció 3D i síntesi d'imatges.Postprint (published version

    Towards Effective Adversarial Textured 3D Meshes on Physical Face Recognition

    Full text link
    Face recognition is a prevailing authentication solution in numerous biometric applications. Physical adversarial attacks, as an important surrogate, can identify the weaknesses of face recognition systems and evaluate their robustness before deployed. However, most existing physical attacks are either detectable readily or ineffective against commercial recognition systems. The goal of this work is to develop a more reliable technique that can carry out an end-to-end evaluation of adversarial robustness for commercial systems. It requires that this technique can simultaneously deceive black-box recognition models and evade defensive mechanisms. To fulfill this, we design adversarial textured 3D meshes (AT3D) with an elaborate topology on a human face, which can be 3D-printed and pasted on the attacker's face to evade the defenses. However, the mesh-based optimization regime calculates gradients in high-dimensional mesh space, and can be trapped into local optima with unsatisfactory transferability. To deviate from the mesh-based space, we propose to perturb the low-dimensional coefficient space based on 3D Morphable Model, which significantly improves black-box transferability meanwhile enjoying faster search efficiency and better visual quality. Extensive experiments in digital and physical scenarios show that our method effectively explores the security vulnerabilities of multiple popular commercial services, including three recognition APIs, four anti-spoofing APIs, two prevailing mobile phones and two automated access control systems

    State of the Art in Dense Monocular Non-Rigid 3D Reconstruction

    Full text link
    3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics. It is an ill-posed inverse problem, since--without additional prior assumptions--it permits infinitely many solutions leading to accurate projection to the input 2D images. Non-rigid reconstruction is a foundational building block for downstream applications like robotics, AR/VR, or visual content creation. The key advantage of using monocular cameras is their omnipresence and availability to the end users as well as their ease of use compared to more sophisticated camera set-ups such as stereo or multi-view systems. This survey focuses on state-of-the-art methods for dense non-rigid 3D reconstruction of various deformable objects and composite scenes from monocular videos or sets of monocular views. It reviews the fundamentals of 3D reconstruction and deformation modeling from 2D image observations. We then start from general methods--that handle arbitrary scenes and make only a few prior assumptions--and proceed towards techniques making stronger assumptions about the observed objects and types of deformations (e.g. human faces, bodies, hands, and animals). A significant part of this STAR is also devoted to classification and a high-level comparison of the methods, as well as an overview of the datasets for training and evaluation of the discussed techniques. We conclude by discussing open challenges in the field and the social aspects associated with the usage of the reviewed methods.Comment: 25 page

    State of the Art in Dense Monocular Non-Rigid 3D Reconstruction

    Get PDF
    3D reconstruction of deformable (or non-rigid) scenes from a set of monocular2D image observations is a long-standing and actively researched area ofcomputer vision and graphics. It is an ill-posed inverse problem,since--without additional prior assumptions--it permits infinitely manysolutions leading to accurate projection to the input 2D images. Non-rigidreconstruction is a foundational building block for downstream applicationslike robotics, AR/VR, or visual content creation. The key advantage of usingmonocular cameras is their omnipresence and availability to the end users aswell as their ease of use compared to more sophisticated camera set-ups such asstereo or multi-view systems. This survey focuses on state-of-the-art methodsfor dense non-rigid 3D reconstruction of various deformable objects andcomposite scenes from monocular videos or sets of monocular views. It reviewsthe fundamentals of 3D reconstruction and deformation modeling from 2D imageobservations. We then start from general methods--that handle arbitrary scenesand make only a few prior assumptions--and proceed towards techniques makingstronger assumptions about the observed objects and types of deformations (e.g.human faces, bodies, hands, and animals). A significant part of this STAR isalso devoted to classification and a high-level comparison of the methods, aswell as an overview of the datasets for training and evaluation of thediscussed techniques. We conclude by discussing open challenges in the fieldand the social aspects associated with the usage of the reviewed methods.<br

    3D Hand Shape and Pose Estimation

    Get PDF
    We study the problem of 3D hand shape and pose estimation from monocular RGB images. Recent studies have shown that single-view 3D hand pose estimation is challenging due to depth ambiguity, environmental conditions, object-occlusion, and self-occlusion. Further, acquiring 3D annotations for datasets requires significant efforts. In this research, towards solving these challenges, we propose some contributions. First, we address the problem of estimating the 3D hand shape and pose in a video dataset given only sparsely annotated frames. We propose label propagation to propagate 3D annotations from labelled frames to nearby unlabelled frames. Next, we address the problem of probabilistic 3D hand shape and pose estimation. Most existing works only estimate a unique solution for a 2D observation and ignore depth and occlusion ambiguities. In contrast, we learn a probability distribution over the hand parameters to generate multiple hypotheses for a given 2D observation

    Real-time 3D hand reconstruction in challenging scenes from a single color or depth camera

    Get PDF
    Hands are one of the main enabling factors for performing complex tasks and humans naturally use them for interactions with their environment. Reconstruction and digitization of 3D hand motion opens up many possibilities for important applications. Hands gestures can be directly used for human–computer interaction, which is especially relevant for controlling augmented or virtual reality (AR/VR) devices where immersion is of utmost importance. In addition, 3D hand motion capture is a precondition for automatic sign-language translation, activity recognition, or teaching robots. Different approaches for 3D hand motion capture have been actively researched in the past. While being accurate, gloves and markers are intrusive and uncomfortable to wear. Hence, markerless hand reconstruction based on cameras is desirable. Multi-camera setups provide rich input, however, they are hard to calibrate and lack the flexibility for mobile use cases. Thus, the majority of more recent methods uses a single color or depth camera which, however, makes the problem harder due to more ambiguities in the input. For interaction purposes, users need continuous control and immediate feedback. This means the algorithms have to run in real time and be robust in uncontrolled scenes. These requirements, achieving 3D hand reconstruction in real time from a single camera in general scenes, make the problem significantly more challenging. While recent research has shown promising results, current state-of-the-art methods still have strong limitations. Most approaches only track the motion of a single hand in isolation and do not take background-clutter or interactions with arbitrary objects or the other hand into account. The few methods that can handle more general and natural scenarios run far from real time or use complex multi-camera setups. Such requirements make existing methods unusable for many aforementioned applications. This thesis pushes the state of the art for real-time 3D hand tracking and reconstruction in general scenes from a single RGB or depth camera. The presented approaches explore novel combinations of generative hand models, which have been used successfully in the computer vision and graphics community for decades, and powerful cutting-edge machine learning techniques, which have recently emerged with the advent of deep learning. In particular, this thesis proposes a novel method for hand tracking in the presence of strong occlusions and clutter, the first method for full global 3D hand tracking from in-the-wild RGB video, and a method for simultaneous pose and dense shape reconstruction of two interacting hands that, for the first time, combines a set of desirable properties previously unseen in the literature.Hände sind einer der Hauptfaktoren für die Ausführung komplexer Aufgaben, und Menschen verwenden sie auf natürliche Weise für Interaktionen mit ihrer Umgebung. Die Rekonstruktion und Digitalisierung der 3D-Handbewegung eröffnet viele Möglichkeiten für wichtige Anwendungen. Handgesten können direkt als Eingabe für die Mensch-Computer-Interaktion verwendet werden. Dies ist insbesondere für Geräte der erweiterten oder virtuellen Realität (AR / VR) relevant, bei denen die Immersion von größter Bedeutung ist. Darüber hinaus ist die Rekonstruktion der 3D Handbewegung eine Voraussetzung zur automatischen Übersetzung von Gebärdensprache, zur Aktivitätserkennung oder zum Unterrichten von Robotern. In der Vergangenheit wurden verschiedene Ansätze zur 3D-Handbewegungsrekonstruktion aktiv erforscht. Handschuhe und physische Markierungen sind zwar präzise, aber aufdringlich und unangenehm zu tragen. Daher ist eine markierungslose Handrekonstruktion auf der Basis von Kameras wünschenswert. Multi-Kamera-Setups bieten umfangreiche Eingabedaten, sind jedoch schwer zu kalibrieren und haben keine Flexibilität für mobile Anwendungsfälle. Daher verwenden die meisten neueren Methoden eine einzelne Farb- oder Tiefenkamera, was die Aufgabe jedoch schwerer macht, da mehr Ambiguitäten in den Eingabedaten vorhanden sind. Für Interaktionszwecke benötigen Benutzer kontinuierliche Kontrolle und sofortiges Feedback. Dies bedeutet, dass die Algorithmen in Echtzeit ausgeführt werden müssen und robust in unkontrollierten Szenen sein müssen. Diese Anforderungen, 3D-Handrekonstruktion in Echtzeit mit einer einzigen Kamera in allgemeinen Szenen, machen das Problem erheblich schwieriger. Während neuere Forschungsarbeiten vielversprechende Ergebnisse gezeigt haben, weisen aktuelle Methoden immer noch Einschränkungen auf. Die meisten Ansätze verfolgen die Bewegung einer einzelnen Hand nur isoliert und berücksichtigen keine alltäglichen Umgebungen oder Interaktionen mit beliebigen Objekten oder der anderen Hand. Die wenigen Methoden, die allgemeinere und natürlichere Szenarien verarbeiten können, laufen nicht in Echtzeit oder verwenden komplexe Multi-Kamera-Setups. Solche Anforderungen machen bestehende Verfahren für viele der oben genannten Anwendungen unbrauchbar. Diese Dissertation erweitert den Stand der Technik für die Echtzeit-3D-Handverfolgung und -Rekonstruktion in allgemeinen Szenen mit einer einzelnen RGB- oder Tiefenkamera. Die vorgestellten Algorithmen erforschen neue Kombinationen aus generativen Handmodellen, die seit Jahrzehnten erfolgreich in den Bereichen Computer Vision und Grafik eingesetzt werden, und leistungsfähigen innovativen Techniken des maschinellen Lernens, die vor kurzem mit dem Aufkommen neuronaler Netzwerke entstanden sind. In dieser Arbeit werden insbesondere vorgeschlagen: eine neuartige Methode zur Handbewegungsrekonstruktion bei starken Verdeckungen und in unkontrollierten Szenen, die erste Methode zur Rekonstruktion der globalen 3D Handbewegung aus RGB-Videos in freier Wildbahn und die erste Methode zur gleichzeitigen Rekonstruktion von Handpose und -form zweier interagierender Hände, die eine Reihe wünschenwerter Eigenschaften komibiniert

    Multimodal perception for autonomous driving

    Get PDF
    Mención Internacional en el título de doctorAutonomous driving is set to play an important role among intelligent transportation systems in the coming decades. The advantages of its large-scale implementation –reduced accidents, shorter commuting times, or higher fuel efficiency– have made its development a priority for academia and industry. However, there is still a long way to go to achieve full self-driving vehicles, capable of dealing with any scenario without human intervention. To this end, advances in control, navigation and, especially, environment perception technologies are yet required. In particular, the detection of other road users that may interfere with the vehicle’s trajectory is a key element, since it allows to model the current traffic situation and, thus, to make decisions accordingly. The objective of this thesis is to provide solutions to some of the main challenges of on-board perception systems, such as extrinsic calibration of sensors, object detection, and deployment on real platforms. First, a calibration method for obtaining the relative transformation between pairs of sensors is introduced, eliminating the complex manual adjustment of these parameters. The algorithm makes use of an original calibration pattern and supports LiDARs, and monocular and stereo cameras. Second, different deep learning models for 3D object detection using LiDAR data in its bird’s eye view projection are presented. Through a novel encoding, the use of architectures tailored to image detection is proposed to process the 3D information of point clouds in real time. Furthermore, the effectiveness of using this projection together with image features is analyzed. Finally, a method to mitigate the accuracy drop of LiDARbased detection networks when deployed in ad-hoc configurations is introduced. For this purpose, the simulation of virtual signals mimicking the specifications of the desired real device is used to generate new annotated datasets that can be used to train the models. The performance of the proposed methods is evaluated against other existing alternatives using reference benchmarks in the field of computer vision (KITTI and nuScenes) and through experiments in open traffic with an automated vehicle. The results obtained demonstrate the relevance of the presented work and its suitability for commercial use.La conducción autónoma está llamada a jugar un papel importante en los sistemas inteligentes de transporte de las próximas décadas. Las ventajas de su implementación a larga escala –disminución de accidentes, reducción del tiempo de trayecto, u optimización del consumo– han convertido su desarrollo en una prioridad para la academia y la industria. Sin embargo, todavía hay un largo camino por delante hasta alcanzar una automatización total, capaz de enfrentarse a cualquier escenario sin intervención humana. Para ello, aún se requieren avances en las tecnologías de control, navegación y, especialmente, percepción del entorno. Concretamente, la detección de otros usuarios de la carretera que puedan interferir en la trayectoria del vehículo es una pieza fundamental para conseguirlo, puesto que permite modelar el estado actual del tráfico y tomar decisiones en consecuencia. El objetivo de esta tesis es aportar soluciones a algunos de los principales retos de los sistemas de percepción embarcados, como la calibración extrínseca de los sensores, la detección de objetos, y su despliegue en plataformas reales. En primer lugar, se introduce un método para la obtención de la transformación relativa entre pares de sensores, eliminando el complejo ajuste manual de estos parámetros. El algoritmo hace uso de un patrón de calibración propio y da soporte a cámaras monoculares, estéreo, y LiDAR. En segundo lugar, se presentan diferentes modelos de aprendizaje profundo para la detección de objectos en 3D utilizando datos de escáneres LiDAR en su proyección en vista de pájaro. A través de una nueva codificación, se propone la utilización de arquitecturas de detección en imagen para procesar en tiempo real la información tridimensional de las nubes de puntos. Además, se analiza la efectividad del uso de esta proyección junto con características procedentes de imágenes. Por último, se introduce un método para mitigar la pérdida de precisión de las redes de detección basadas en LiDAR cuando son desplegadas en configuraciones ad-hoc. Para ello, se plantea la simulación de señales virtuales con las características del modelo real que se quiere utilizar, generando así nuevos conjuntos anotados para entrenar los modelos. El rendimiento de los métodos propuestos es evaluado frente a otras alternativas existentes haciendo uso de bases de datos de referencia en el campo de la visión por computador (KITTI y nuScenes), y mediante experimentos en tráfico abierto empleando un vehículo automatizado. Los resultados obtenidos demuestran la relevancia de los trabajos presentados y su viabilidad para un uso comercial.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Jesús García Herrero.- Secretario: Ignacio Parra Alonso.- Vocal: Gustavo Adolfo Peláez Coronad

    Super Resolution of Wavelet-Encoded Images and Videos

    Get PDF
    In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain) image registration; then, investigate super resolution. Our motivation for analyzing the image registration and super resolution problems in the wavelet domain is the growing trend in wavelet-encoded imaging, and wavelet-encoding for image/video compression. Due to drawbacks of widely used discrete cosine transform in image and video compression, a considerable amount of literature is devoted to wavelet-based methods. However, since wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order to overcome this drawback, we establish and explore the direct relationship between the subbands under a translational shift, for image registration and super resolution. We then employ our devised in-band methodology, in a motion compensated video compression framework, to demonstrate the effective usage of wavelet subbands. Super resolution can also be used as a post-processing step in video compression in order to decrease the size of the video files to be compressed, with downsampling added as a pre-processing step. Therefore, we present a video compression scheme that utilizes super resolution to reconstruct the high frequency information lost during downsampling. In addition, super resolution is a crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods in enhancing resolution of pansharpened multispectral images
    corecore