93 research outputs found

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    An Overview of Physical Layer Security with Finite-Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving perfect secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and we discuss some open problems and directions for future research.Comment: Submitted to IEEE Communications Surveys & Tutorials (1st Revision

    Waveform-Defined Security: A Low-Cost Framework for Secure Communications

    Get PDF
    Communication security could be enhanced at physical layer but at the cost of complex algorithms and redundant hardware, which would render traditional physical layer security (PLS) techniques unsuitable for use with resource-constrained communication systems. This work investigates a waveform-defined security (WDS) framework, which differs fundamentally from traditional PLS techniques used in today’s systems. The framework is not dependent on channel conditions such as signal power advantage and channel state information (CSI). Therefore, the framework is more reliable than channel dependent beamforming and artificial noise (AN) techniques. In addition, the framework is more than just increasing the cost of eavesdropping. By intentionally tuning waveform patterns to weaken signal feature diversity and enhance feature similarity, eavesdroppers will not be able to identify correctly signal formats. The wrong classification of signal formats would result in subsequent detection errors even when an eavesdropper uses brute-force detection techniques. To get a robust WDS framework, three impact factors, namely training data feature, oversampling factor and bandwidth compression factor (BCF) offset, are investigated. An optimal WDS waveform pattern is obtained at the end after a joint study of the three factors. To ensure a valid eavesdropping model, artificial intelligence (AI) dependent signal classifiers are designed followed by optimal performance achievable signal detectors. To show the compatibility in available communication systems, the WDS framework is successfully integrated in IEEE 802.11a with nearly no adding computational complexity. Finally, a low-cost software-defined radio (SDR) experiment is designed to verify the feasibility of the WDS framework in resource-constrained communications

    Secrecy Energy Efficiency of MIMOME Wiretap Channels with Full-Duplex Jamming

    Full text link
    Full-duplex (FD) jamming transceivers are recently shown to enhance the information security of wireless communication systems by simultaneously transmitting artificial noise (AN) while receiving information. In this work, we investigate if FD jamming can also improve the systems secrecy energy efficiency (SEE) in terms of securely communicated bits-per- Joule, when considering the additional power used for jamming and self-interference (SI) cancellation. Moreover, the degrading effect of the residual SI is also taken into account. In this regard, we formulate a set of SEE maximization problems for a FD multiple-input-multiple-output multiple-antenna eavesdropper (MIMOME) wiretap channel, considering both cases where exact or statistical channel state information (CSI) is available. Due to the intractable problem structure, we propose iterative solutions in each case with a proven convergence to a stationary point. Numerical simulations indicate only a marginal SEE gain, through the utilization of FD jamming, for a wide range of system conditions. However, when SI can efficiently be mitigated, the observed gain is considerable for scenarios with a small distance between the FD node and the eavesdropper, a high Signal-to-noise ratio (SNR), or for a bidirectional FD communication setup.Comment: IEEE Transactions on Communication

    Design of an OFDM Physical Layer Encryption Scheme

    Get PDF
    This paper presents a new encryption scheme implemented at the physical layer of wireless networks employing orthogonal frequency-division multiplexing (OFDM). The new scheme obfuscates the subcarriers by randomly reserving several subcarriers for dummy data and resequences the training symbol by a new secure sequence. Subcarrier obfuscation renders the OFDM transmission more secure and random, whereas training symbol resequencing protects the entire physical layer packet but does not affect the normal functions of synchronization and channel estimation of legitimate users while preventing eavesdroppers from performing these functions. The security analysis shows that the system is robust to various attacks by analyzing the search space using an exhaustive key search. Our scheme is shown to perform better in terms of search space, key rate, and complexity in comparison with other OFDM physical layer encryption schemes. The scheme offers options for users to customize the security level and the key rate according to the hardware resource. Its low complexity nature also makes the scheme suitable for resource-limited devices. Details of practical design considerations are highlighted by applying the approach to an IEEE 802.11 OFDM system case study

    An Overview of Physical Layer Security with Finite Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and discuss some open problems and directions for future research

    Physical Layer Security in Integrated Sensing and Communication Systems

    Get PDF
    The development of integrated sensing and communication (ISAC) systems has been spurred by the growing congestion of the wireless spectrum. The ISAC system detects targets and communicates with downlink cellular users simultaneously. Uniquely for such scenarios, radar targets are regarded as potential eavesdroppers which might surveil the information sent from the base station (BS) to communication users (CUs) via the radar probing signal. To address this issue, we propose security solutions for ISAC systems to prevent confidential information from being intercepted by radar targets. In this thesis, we firstly present a beamformer design algorithm assisted by artificial noise (AN), which aims to minimize the signal-to-noise ratio (SNR) at the target while ensuring the quality of service (QoS) of legitimate receivers. Furthermore, to reduce the power consumed by AN, we apply the directional modulation (DM) approach to exploit constructive interference (CI). In this case, the optimization problem is designed to maximize the SINR of the target reflected echoes with CI constraints for each CU, while constraining the received symbols at the target in the destructive region. Apart from the separate functionalities of radar and communication systems above, we investigate sensing-aided physical layer security (PLS), where the ISAC BS first emits an omnidirectional waveform to search for and estimate target directions. Then, we formulate a weighted optimization problem to simultaneously maximize the secrecy rate and minimize the Cram\'er-Rao bound (CRB) with the aid of the AN, designing a beampattern with a wide main beam covering all possible angles of targets. The main beam width of the next iteration depends on the optimal CRB. In this way, the sensing and security functionalities provide mutual benefits, resulting in the improvement of mutual performances with every iteration of the optimization, until convergence. Overall, numerical results show the effectiveness of the ISAC security designs through the deployment of AN-aided secrecy rate maximization and CI techniques. The sensing-assisted PLS scheme offers a new approach for obtaining channel information of eavesdroppers, which is treated as a limitation of conventional PLS studies. This design gains mutual benefits in both single and multi-target scenarios

    Multi-Domain Polarization for Enhancing the Physical Layer Security of MIMO Systems

    Full text link
    A novel Physical Layer Security (PLS) framework is conceived for enhancing the security of the wireless communication systems by exploiting multi-domain polarization in Multiple-Input Multiple-Output (MIMO) systems. We design a sophisticated key generation scheme based on multi-domain polarization, and the corresponding receivers. An in-depth analysis of the system's secrecy rate is provided, demonstrating the confidentiality of our approach in the presence of eavesdroppers having strong computational capabilities. More explicitly, our simulation results and theoretical analysis corroborate the advantages of the proposed scheme in terms of its bit error rate (BER), block error rate (BLER), and maximum achievable secrecy rate. Our findings indicate that the innovative PLS framework effectively enhances the security and reliability of wireless communication systems. For instance, in a 4×44\times4 MIMO setup, the proposed PLS strategy exhibits an improvement of 22dB compared to conventional MIMO, systems at a BLER of 2⋅10−52\cdot 10^{-5} while the eavesdropper's BLER reaches 11
    • …
    corecore