1,232 research outputs found

    NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish

    Full text link
    [EN] Most of the models proposed in the literature for abstractive summarization are generally suitable for the English language but not for other languages. Multilingual models were introduced to address that language constraint, but despite their applicability being broader than that of the monolingual models, their performance is typically lower, especially for minority languages like Catalan. In this paper, we present a monolingual model for abstractive summarization of textual content in the Catalan language. The model is a Transformer encoder-decoder which is pretrained and fine-tuned specifically for the Catalan language using a corpus of newspaper articles. In the pretraining phase, we introduced several self-supervised tasks to specialize the model on the summarization task and to increase the abstractivity of the generated summaries. To study the performance of our proposal in languages with higher resources than Catalan, we replicate the model and the experimentation for the Spanish language. The usual evaluation metrics, not only the most used ROUGE measure but also other more semantic ones such as BertScore, do not allow to correctly evaluate the abstractivity of the generated summaries. In this work, we also present a new metric, called content reordering, to evaluate one of the most common characteristics of abstractive summaries, the rearrangement of the original content. We carried out an exhaustive experimentation to compare the performance of the monolingual models proposed in this work with two of the most widely used multilingual models in text summarization, mBART and mT5. The experimentation results support the quality of our monolingual models, especially considering that the multilingual models were pretrained with many more resources than those used in our models. Likewise, it is shown that the pretraining tasks helped to increase the degree of abstractivity of the generated summaries. To our knowledge, this is the first work that explores a monolingual approach for abstractive summarization both in Catalan and Spanish.This work was partially supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades and FEDER founds under the project AMIC (TIN2017-85854-C4-2-R), and by the Agencia Valenciana de la Innovacio (AVI) of the Generalitat Valenciana under the GUAITA (INNVA1/2020/61) project.Ahuir-Esteve, V.; Hurtado Oliver, LF.; González-Barba, JÁ.; Segarra Soriano, E. (2021). NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish. Applied Sciences. 11(21):1-16. https://doi.org/10.3390/app11219872S116112

    Text-Only Image Captioning with Multi-Context Data Generation

    Full text link
    Text-only Image Captioning (TIC) is an approach that aims to construct a model solely based on text that can accurately describe images. Recently, diffusion models have demonstrated remarkable capabilities in generating high-quality images that are semantically coherent with given texts. This presents an opportunity to generate synthetic training images for TIC. However, we have identified a challenge that the images generated from simple descriptions typically exhibit a single perspective with one or limited contexts, which is not aligned with the complexity of real-world scenes in the image domain. In this paper, we propose a novel framework that addresses this issue by introducing multi-context data generation. Starting with an initial text corpus, our framework employs a large language model to select multiple sentences that describe the same scene from various perspectives. These sentences are then summarized into a single sentence with multiple contexts. We generate simple images using the straightforward sentences and complex images using the summarized sentences through diffusion models. Finally, we train the model exclusively using the synthetic image-text pairs obtained from this process. Experimental results demonstrate that our proposed framework effectively tackles the central challenge we have identified, achieving the state-of-the-art performance on popular datasets such as MSCOCO, Flickr30k, and SS1M
    corecore