2,521 research outputs found

    Improving Adversarial Robustness of Masked Autoencoders via Test-time Frequency-domain Prompting

    Full text link
    In this paper, we investigate the adversarial robustness of vision transformers that are equipped with BERT pretraining (e.g., BEiT, MAE). A surprising observation is that MAE has significantly worse adversarial robustness than other BERT pretraining methods. This observation drives us to rethink the basic differences between these BERT pretraining methods and how these differences affect the robustness against adversarial perturbations. Our empirical analysis reveals that the adversarial robustness of BERT pretraining is highly related to the reconstruction target, i.e., predicting the raw pixels of masked image patches will degrade more adversarial robustness of the model than predicting the semantic context, since it guides the model to concentrate more on medium-/high-frequency components of images. Based on our analysis, we provide a simple yet effective way to boost the adversarial robustness of MAE. The basic idea is using the dataset-extracted domain knowledge to occupy the medium-/high-frequency of images, thus narrowing the optimization space of adversarial perturbations. Specifically, we group the distribution of pretraining data and optimize a set of cluster-specific visual prompts on frequency domain. These prompts are incorporated with input images through prototype-based prompt selection during test period. Extensive evaluation shows that our method clearly boost MAE's adversarial robustness while maintaining its clean performance on ImageNet-1k classification. Our code is available at: https://github.com/shikiw/RobustMAE.Comment: Accepted at ICCV 202

    Foundation Model-oriented Robustness: Robust Image Model Evaluation with Pretrained Models

    Full text link
    Machine learning has demonstrated remarkable performance over finite datasets, yet whether the scores over the fixed benchmarks can sufficiently indicate the model's performance in the real world is still in discussion. In reality, an ideal robust model will probably behave similarly to the oracle (e.g., the human users), thus a good evaluation protocol is probably to evaluate the models' behaviors in comparison to the oracle. In this paper, we introduce a new robustness measurement that directly measures the image classification model's performance compared with a surrogate oracle (i.e., a foundation model). Besides, we design a simple method that can accomplish the evaluation beyond the scope of the benchmarks. Our method extends the image datasets with new samples that are sufficiently perturbed to be distinct from the ones in the original sets, but are still bounded within the same image-label structure the original test image represents, constrained by a foundation model pretrained with a large amount of samples. As a result, our new method will offer us a new way to evaluate the models' robustness performance, free of limitations of fixed benchmarks or constrained perturbations, although scoped by the power of the oracle. In addition to the evaluation results, we also leverage our generated data to understand the behaviors of the model and our new evaluation strategies

    Distilling Out-of-Distribution Robustness from Vision-Language Foundation Models

    Full text link
    We propose a conceptually simple and lightweight framework for improving the robustness of vision models through the combination of knowledge distillation and data augmentation. We address the conjecture that larger models do not make for better teachers by showing strong gains in out-of-distribution robustness when distilling from pretrained foundation models. Following this finding, we propose Discrete Adversarial Distillation (DAD), which leverages a robust teacher to generate adversarial examples and a VQGAN to discretize them, creating more informative samples than standard data augmentation techniques. We provide a theoretical framework for the use of a robust teacher in the knowledge distillation with data augmentation setting and demonstrate strong gains in out-of-distribution robustness and clean accuracy across different student architectures. Notably, our method adds minor computational overhead compared to similar techniques and can be easily combined with other data augmentations for further improvements.Comment: Published in NeurIPS 202

    Three Towers: Flexible Contrastive Learning with Pretrained Image Models

    Full text link
    We introduce Three Towers (3T), a flexible method to improve the contrastive learning of vision-language models by incorporating pretrained image classifiers. While contrastive models are usually trained from scratch, LiT (Zhai et al., 2022) has recently shown performance gains from using pretrained classifier embeddings. However, LiT directly replaces the image tower with the frozen embeddings, excluding any potential benefits of contrastively training the image tower. With 3T, we propose a more flexible strategy that allows the image tower to benefit from both pretrained embeddings and contrastive training. To achieve this, we introduce a third tower that contains the frozen pretrained embeddings, and we encourage alignment between this third tower and the main image-text towers. Empirically, 3T consistently improves over LiT and the CLIP-style from-scratch baseline for retrieval tasks. For classification, 3T reliably improves over the from-scratch baseline, and while it underperforms relative to LiT for JFT-pretrained models, it outperforms LiT for ImageNet-21k and Places365 pretraining

    Beyond Pretrained Features: Noisy Image Modeling Provides Adversarial Defense

    Full text link
    Recent advancements in masked image modeling (MIM) have made it a prevailing framework for self-supervised visual representation learning. The MIM pretrained models, like most deep neural network methods, are still vulnerable to adversarial attacks, limiting their practical application, and this issue has received little research attention. In this paper, we investigate how this powerful self-supervised learning paradigm can provide adversarial robustness to downstream classifiers. During the exploration, we find that noisy image modeling (NIM), a simple variant of MIM that adopts denoising as the pre-text task, reconstructs noisy images surprisingly well despite severe corruption. Motivated by this observation, we propose an adversarial defense method by exploiting the pretrained decoder for denoising, referred to as De^3, through which NIM is able to enhance adversarial robustness beyond providing pretrained features. Furthermore, we incorporate a simple modification, sampling the noise scale hyperparameter from random distributions, and enable the defense to achieve a better and tunable trade-off between accuracy and robustness. Experimental results demonstrate that, in terms of adversarial robustness, NIM is superior compared to MIM thanks to its effective denoising capability. Moreover, the defense provided by NIM achieves performance on par with adversarial training while offering the extra tunability advantage. Source code and models will be made available

    Selecting Informative Contexts Improves Language Model Finetuning

    Full text link
    We present a general finetuning meta-method that we call information gain filtration for improving the overall training efficiency and final performance of language model finetuning. This method uses a secondary learner which attempts to quantify the benefit of finetuning the language model on each given example. During the finetuning process, we use this learner to decide whether or not each given example should be trained on or skipped. We show that it suffices for this learner to be simple and that the finetuning process itself is dominated by the relatively trivial relearning of a new unigram frequency distribution over the modelled language domain, a process which the learner aids. Our method trains to convergence using 40% fewer batches than normal finetuning, and achieves a median perplexity of 54.0 on a books dataset compared to a median perplexity of 57.3 for standard finetuning using the same neural architecture

    Evaluating natural language processing models with generalization metrics that do not need access to any training or testing data

    Full text link
    The search for effective and robust metrics has been the focus of recent theoretical and empirical work on generalization of deep neural networks (NNs). In this paper, we discuss the performance of natural language processing (NLP) models, and we evaluate various existing and novel generalization metrics. Compared to prior studies, we (i) focus on NLP instead of computer vision (CV), (ii) focus on generalization metrics that predict test error instead of the generalization gap, (iii) focus on generalization metrics that do not need the access to data, and (iv) focus on the heavy-tail (HT) phenomenon that has received comparatively less attention in the study of NNs. We extend recent HT-based work which focuses on power law (PL) distributions, and we study exponential and exponentially truncated power law (E-TPL) fitting to the empirical spectral densities (ESDs) of weight matrices. Our empirical studies are carried on (i) hundreds of Transformers trained in different settings, in which we systematically vary different hyperparameters, (ii) a total of 51 pretrained Transformers from eight families of Huggingface NLP models, including BERT, GPT2, etc., and (iii) a total of 28 existing and novel generalization metrics. From our empirical analyses, we show that shape metrics, or the metrics obtained from fitting the shape of the ESDs, perform uniformly better at predicting generalization performance than scale metrics commonly studied in the literature, as measured by the rank correlations with the generalization performance. We also show that among the three HT distributions considered in our paper, the E-TPL fitting of ESDs performs the most robustly when the models are trained in experimental settings, while the PL fitting achieves the best performance on well-trained Huggingface models, and that both E-TPL and PL metrics (which are both shape metrics) outperform scale metrics

    Efficiently Robustify Pre-trained Models

    Full text link
    A recent trend in deep learning algorithms has been towards training large scale models, having high parameter count and trained on big dataset. However, robustness of such large scale models towards real-world settings is still a less-explored topic. In this work, we first benchmark the performance of these models under different perturbations and datasets thereby representing real-world shifts, and highlight their degrading performance under these shifts. We then discuss on how complete model fine-tuning based existing robustification schemes might not be a scalable option given very large scale networks and can also lead them to forget some of the desired characterstics. Finally, we propose a simple and cost-effective method to solve this problem, inspired by knowledge transfer literature. It involves robustifying smaller models, at a lower computation cost, and then use them as teachers to tune a fraction of these large scale networks, reducing the overall computational overhead. We evaluate our proposed method under various vision perturbations including ImageNet-C,R,S,A datasets and also for transfer learning, zero-shot evaluation setups on different datasets. Benchmark results show that our method is able to induce robustness to these large scale models efficiently, requiring significantly lower time and also preserves the transfer learning, zero-shot properties of the original model which none of the existing methods are able to achieve
    • …
    corecore