418 research outputs found

    Ongoing neural oscillations influence behavior and sensory representations by suppressing neuronal excitability

    Get PDF
    The ability to process and respond to external input is critical for adaptive behavior. Why, then, do neural and behavioral responses vary across repeated presentations of the same sensory input? Ongoing fluctuations of neuronal excitability are currently hypothesized to underlie the trial-by-trial variability in sensory processing. To test this, we capitalized on intracranial electrophysiology in neurosurgical patients performing an auditory discrimination task with visual cues: specifically, we examined the interaction between prestimulus alpha oscillations, excitability, task performance, and decoded neural stimulus representations. We found that strong prestimulus oscillations in the alpha+ band (i.e., alpha and neighboring frequencies), rather than the aperiodic signal, correlated with a low excitability state, indexed by reduced broadband high-frequency activity. This state was related to slower reaction times and reduced neural stimulus encoding strength. We propose that the alpha+ rhythm modulates excitability, thereby resulting in variability in behavior and sensory representations despite identical input

    Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition

    Get PDF
    In order to understand the working brain as a network, it is essential to identify the mechanisms by which information is gated between regions. We here propose that information is gated by inhibiting task-irrelevant regions, thus routing information to task-relevant regions. The functional inhibition is reflected in oscillatory activity in the alpha band (8–13 Hz). From a physiological perspective the alpha activity provides pulsed inhibition reducing the processing capabilities of a given area. Active processing in the engaged areas is reflected by neuronal synchronization in the gamma band (30–100 Hz) accompanied by an alpha band decrease. According to this framework the brain could be studied as a network by investigating cross-frequency interactions between gamma and alpha activity. Specifically the framework predicts that optimal task performance will correlate with alpha activity in task-irrelevant areas. In this review we will discuss the empirical support for this framework. Given that alpha activity is by far the strongest signal recorded by EEG and MEG, we propose that a major part of the electrophysiological activity detected from the working brain reflects gating by inhibition

    Brain rhythms of pain

    Get PDF
    Pain is an integrative phenomenon that results from dynamic interactions between sensory and contextual (i.e., cognitive, emotional, and motivational) processes. In the brain the experience of pain is associated with neuronal oscillations and synchrony at different frequencies. However, an overarching framework for the significance of oscillations for pain remains lacking. Recent concepts relate oscillations at different frequencies to the routing of information flow in the brain and the signaling of predictions and prediction errors. The application of these concepts to pain promises insights into how flexible routing of information flow coordinates diverse processes that merge into the experience of pain. Such insights might have implications for the understanding and treatment of chronic pain

    Subjective pain perception mediated by alpha rhythms

    Get PDF
    Suppression of spontaneous alpha oscillatory activities, interpreted as cortical excitability, was observed in response to both transient and tonic painful stimuli. The changes of alpha rhythms induced by pain could be modulated by painful sensory inputs, experimental tasks, and top-down cognitive regulations such as attention. The temporal and spatial characteristics, as well as neural functions of pain induced alpha responses, depend much on how these factors contribute to the observed alpha event-related desynchronization/synchronization (ERD/ERS). How sensory-, task-, and cognitive-related changes of alpha oscillatory activities interact in pain perception process is reviewed in the current study, and the following conclusions are made: (1) the functional inhibition hypothesis that has been proposed in auditory and visual modalities could be applied also in pain modality; (2) the neural functions of pain induced alpha ERD/ERS were highly dependent on the cortical regions where it is observed, e.g., somatosensory cortex alpha ERD/ERS in pain perception for painful stimulus processing; (3) the attention modulation of pain perception, i.e., influences on the sensory and affective dimensions of pain experience, could be mediated by changes of alpha rhythms. Finally, we propose a model regarding the determinants of pain related alpha oscillatory activity, i.e., sensory-discriminative, affective-motivational, and cognitive-modulative aspects of pain experience, would affect and determine pain related alpha oscillatory activities in an integrated way within the distributed alpha system. Copyright © 2015 Elsevier B.V. All rights reserved.postprin

    From rest to task

    Get PDF
    A primary goal of neuroscience research on psychiatric disorders such as schizophrenia is to enhance the current understanding of underlying biological mechanisms in order to develop novel interventions. Human brain functions are maintained through activity of large-scale brain networks. Accordingly, deficient perceptual and cognitive processing can be caused by failures of functional integration within networks, as reflected by the disconnection hypothesis of schizophrenia. Various neuroimaging techniques can be applied to study functional brain networks, each having different strengths. Frequently used complementary methods are the electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), which were shown to have a common basis. Given the feasibility of combined EEG and fMRI measurement, EEG signatures of functional networks have been described, providing complimentary information about the functional state of networks. Both at rest and during task completion, many independent EEG and fMRI studies confirmed deficient network connectivity in schizophrenia. However, a rather diffuse picture with hyper- and hypo- activations within and between specific networks was reported. Furthermore, the theory of state dependent information processing argues that spontaneous and prestimulus brain activity interacts with upcoming task-related processes. Consequently, observed network deficits that vary according to task conditions could be caused by differences in resting or prestimulus state in schizophrenia. Based on that background, the present thesis aimed to increase the understanding of aberrant functional networks in schizophrenia by using simultaneous EEG-fMRI under different conditions. One study investigated integrative mechanisms of networks during eyes-open (EO) resting state using a common-phase synchronization measure in an EEG-informed fMRI analysis (study 3). The other two studies (studies 1&2) used an fMRI-informed EEG analysis: The second study was an extension of the first, which was performed in healthy subjects only. Hence, the same methodologies and analyses were applied in both studies, but in the second study schizophrenia patients were compared to healthy controls. The associations between four temporally coherent networks (TCNs) – the default mode network (DMN), the dorsal attention network (dAN), left and right working memory networks (WMNs) – and power of three EEG frequency bands (theta, alpha, and beta band) during a verbal working memory (WM) task were investigated. Both resting state and task-related studies performed in schizophrenia patients (studies 2&3) revealed altered activation strength, functional states and interaction of TCNs, especially of the DMN. During rest (study 3), the DMN was differently integrated through common-phase synchronization in the delta (0.5 – 3.5Hz) and beta (13 – 30Hz) band. At prestimulus states of a verbal WM task, however, study 2 did not reveal differences in the activation level of the DMN between groups. Furthermore, from pre-to-post stimulus, the association of the DMN with frontal-midline (FM) theta (3 – 7Hz) band was altered, and a reduced suppression of the DMN during WM retention was detected. Schizophrenia patients also demonstrated abnormal interactions between networks: the DMN and dAN showed a reduced anti-correlation and the WMNs demonstrated an absent lateralization effect (study 2). The view that schizophrenia patients display TCN deficiencies is supported by the results of the present thesis. Especially the DMN and its interaction to the task-positive dAN showed specific alterations at different mental states and their interaction (during rest and from pre-to-post stimulus). Those alterations might at least partly explain observed symptomatology as attentional orientation deficits in patients. To conclude, functional networks as the DMN might represent promising targets for novel treatment options such as neurofeedback or transcranial direct current stimulation (tDCS)

    The spatial localization of targeted alpha modulations in concurrent EEG-fMRI during visual entrainment

    Get PDF

    Roles of Brain Criticality and Multiscale Oscillations in Temporal Predictions for Sensorimotor Processing

    Get PDF
    Sensorimotor predictions are essential for adaptive behavior. In natural environments, events that demand sensorimotor predictions unfold across many timescales, and corresponding temporal predictions (either explicit or implicit) should therefore emerge in brain dynamics. Neuronal oscillations are scale-specific processes found in several frequency bands. They underlie periodicity in sensorimotor processing and can represent temporal predictions via their phase dynamics. These processes build upon endogenous neural rhythmicity and adapt in response to exogenous timing demands. While much of the research on periodicity in neural processing has focused on subsecond oscillations, these fast-scale rhythms are in fact paralleled by critical-like, scale-free dynamics and fluctuations of brain activity at various timescales, ranging from seconds to hundreds of seconds. In this review, we put forth a framework positing that critical brain dynamics are essential for the role of neuronal oscillations in timing and that cross-frequency coupling flexibly organizes neuronal processing across multiple frequencies.Peer reviewe

    Studying the cortical state with transcranial magnetic stimulation

    Get PDF
    Cortical excitability and connectivity describe the state of the cerebral cortex. They reflect the ability of neurons to respond to input and the way information flows in the neuronal networks. These properties can be assessed with transcranial magnetic stimulation (TMS), which enables direct and noninvasive modulation of cortical activity. Electrophysiological or hemodynamic recordings of TMS-evoked activity or behavioral measures of the stimulation effect characterize the state of the cortex during and as a result of the stimulation. In the research reported in this Thesis, the ability of TMS to inform us about the cortical state is studied from different points of view. First, we examine the relationships between different measures of cortical excitability to better understand the physiology behind them; we show how cortical background activity is related to motor cortical excitability and how the evoked responses reflect the excitability. Second, this study addresses the questions whether the TMS-evoked responses include stimulation-related artifacts, how these artifacts are generated, and how they can be avoided or removed. Specifically, we present a method to remove the artifacts from TMS-evoked electroencephalographic (EEG) signals arising as a result of cranial muscle stimulation. The use of TMS-EEG has been limited to relatively medial sites because of these artifacts, but the new method enables studying the cortical state even when stimulating areas near the cranial muscles, especially lateral sites. Finally, this work provides new information about brain function. The mechanisms how the brain processes visually guided timed motor actions are elucidated. Moreover, we show that cortical excitability as measured with TMS-evoked EEG increases during the course of wakefulness and decreases during sleep, which contributes to our understanding of what happens in the brain during wakefulness that makes us feel tired and why the brain needs sleep. The study also shows the sensitivity of the TMS-EEG measurement to changes in the state of the cortex. Accordingly, we demonstrate the power of TMS in studying the cortical state

    Using Brain–Computer Interfaces and Brain-State Dependent Stimulation as Tools in Cognitive Neuroscience

    Get PDF
    Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain–computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work
    • …
    corecore