224 research outputs found

    On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond

    Get PDF
    An improved understanding of the divergence-free constraint for the incompressible Navier--Stokes equations leads to the observation that a semi-norm and corresponding equivalence classes of forces are fundamental for their nonlinear dynamics. The recent concept of {\em pressure-robustness} allows to distinguish between space discretisations that discretise these equivalence classes appropriately or not. This contribution compares the accuracy of pressure-robust and non-pressure-robust space discretisations for transient high Reynolds number flows, starting from the observation that in generalised Beltrami flows the nonlinear convection term is balanced by a strong pressure gradient. Then, pressure-robust methods are shown to outperform comparable non-pressure-robust space discretisations. Indeed, pressure-robust methods of formal order kk are comparably accurate than non-pressure-robust methods of formal order 2k2k on coarse meshes. Investigating the material derivative of incompressible Euler flows, it is conjectured that strong pressure gradients are typical for non-trivial high Reynolds number flows. Connections to vortex-dominated flows are established. Thus, pressure-robustness appears to be a prerequisite for accurate incompressible flow solvers at high Reynolds numbers. The arguments are supported by numerical analysis and numerical experiments.Comment: 43 pages, 18 figures, 2 table

    Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier--Stokes equations

    Get PDF
    Inf-sup stable FEM applied to time-dependent incompressible Navier--Stokes flows are considered. The focus lies on robust estimates for the kinetic and dissipation energies in a twofold sense. Firstly, pressure-robustness ensures the fulfilment of a fundamental invariance principle and velocity error estimates are not corrupted by the pressure approximability. Secondly, Re-semi-robustness means that constants appearing on the right-hand side of kinetic and dissipation energy error estimates (including Gronwall constants) do not explicitly depend on the Reynolds number. Such estimates rely on an essential regularity assumption for the gradient of the velocity, which is discussed in detail. In the sense of best practice, we review and establish pressure- and Re-semi-robust estimates for pointwise divergence-free H1-conforming FEM (like Scott--Vogelius pairs or certain isogeometric based FEM) and pointwise divergence-free H(div)-conforming discontinuous Galerkin FEM. For convection-dominated problems, the latter naturally includes an upwind stabilisation for the velocity which is not gradient-based

    Finite elements for scalar convection-dominated equations and incompressible flow problems - A never ending story?

    Get PDF
    The contents of this paper is twofold. First, important recent results concerning finite element methods for convection-dominated problems and incompressible flow problems are described that illustrate the activities in these topics. Second, a number of, in our opinion, important problems in these fields are discussed

    On the convergence order of the finite element error in the kinetic energy for high Reynolds number incompressible flows

    Get PDF
    The kinetic energy of a flow is proportional to the square of the norm of the velocity. Given a sufficient regular velocity field and a velocity finite element space with polynomials of degree , then the best approximation error in is of order . In this survey, the available finite element error analysis for the velocity error in is reviewed, where is a final time. Since in practice the case of small viscosity coefficients or dominant convection is of particular interest, which may result in turbulent flows, robust error estimates are considered, i.e., estimates where the constant in the error bound does not depend on inverse powers of the viscosity coefficient. Methods for which robust estimates can be derived enable stable flow simulations for small viscosity coefficients on comparatively coarse grids, which is often the situation encountered in practice. To introduce stabilization techniques for the convection-dominated regime and tools used in the error analysis, evolutionary linear convection–diffusion equations are studied at the beginning. The main part of this survey considers robust finite element methods for the incompressible Navier–Stokes equations of order , , and for the velocity error in . All these methods are discussed in detail. In particular, a sketch of the proof for the error bound is given that explains the estimate of important terms which determine finally the order of convergence. Among them, there are methods for inf–sup stable pairs of finite element spaces as well as for pressure-stabilized discretizations. Numerical studies support the analytic results for several of these methods. In addition, methods are surveyed that behave in a robust way but for which only a non-robust error analysis is available. The conclusion of this survey is that the problem of whether or not there is a robust method with optimal convergence order for the kinetic energy is still open

    On really locking-free mixed finite element methods for the transient incompressible Stokes equations

    Get PDF
    Inf-sup stable mixed methods for the steady incompressible Stokes equations that relax the divergence constraint are often claimed to deliver locking-free discretizations. However, this relaxation leads to a pressure-dependent contribution in the velocity error, which is proportional to the inverse of the viscosity, thus giving rise to a (different) locking phenomenon. However, a recently proposed modification of the right hand side alone leads to a discretization that is really locking-free, i.e., its velocity error converges with optimal order and is independent of the pressure and the smallness of the viscosity. In this contribution, we extend this approach to the transient incompressible Stokes equations, where besides the right hand side also the velocity time derivative requires an improved space discretization. Semi-discrete and fully-discrete a-priori velocity and pressure error estimates are derived, which show beautiful robustness properties. Two numerical examples illustrate the superior accuracy of pressure-robust space discretizations in the case of small viscosities

    Longer time accuracy for incompressible Navier-Stokes simulations with the EMAC formulation

    Full text link
    In this paper, we consider the recently introduced EMAC formulation for the incompressible Navier-Stokes (NS) equations, which is the only known NS formulation that conserves energy, momentum and angular momentum when the divergence constraint is only weakly enforced. Since its introduction, the EMAC formulation has been successfully used for a wide variety of fluid dynamics problems. We prove that discretizations using the EMAC formulation are potentially better than those built on the commonly used skew-symmetric formulation, by deriving a better longer time error estimate for EMAC: while the classical results for schemes using the skew-symmetric formulation have Gronwall constants dependent on exp⁡(C⋅Re⋅T)\exp(C\cdot Re\cdot T) with ReRe the Reynolds number, it turns out that the EMAC error estimate is free from this explicit exponential dependence on the Reynolds number. Additionally, it is demonstrated how EMAC admits smaller lower bounds on its velocity error, since {incorrect treatment of linear momentum, angular momentum and energy induces} lower bounds for L2L^2 velocity error, and EMAC treats these quantities more accurately. Results of numerical tests for channel flow past a cylinder and 2D Kelvin-Helmholtz instability are also given, both of which show that the advantages of EMAC over the skew-symmetric formulation increase as the Reynolds number gets larger and for longer simulation times.Comment: 21 pages, 5 figure

    On really locking-free mixed finite element methods for the transient incompressible Stokes equations

    Get PDF
    Inf-sup stable mixed methods for the steady incompressible Stokes equations that relax the divergence constraint are often claimed to deliver locking-free discretizations. However, this relaxation leads to a pressure-dependent contribution in the velocity error, which is proportional to the inverse of the viscosity, thus giving rise to a (different) locking phenomenon. However, a recently proposed modification of the right hand side alone leads to a discretization that is really locking-free, i.e., its velocity error converges with optimal order and is independent of the pressure and the smallness of the viscosity. In this contribution, we extend this approach to the transient incompressible Stokes equations, where besides the right hand side also the velocity time derivative requires an improved space discretization. Semi-discrete and fully-discrete a-priori velocity and pressure error estimates are derived, which show beautiful robustness properties. Two numerical examples illustrate the superior accuracy of pressure-robust space discretizations in the case of small viscosities
    • 

    corecore