5 research outputs found

    Enhanced reliable and energy efficient pressure based data forwarding schemes for underwater wireless sensor networks

    Get PDF
    Data collection in Underwater Wireless Sensor Networks (UWSN) requires highly optimized communication approach in order to achieve efficient data packet delivery. This approach consists of different communication layers of which routing protocol is an important consideration. Several issues including packet entrapment due to void region, selection of forwarding node with insufficient link quality and packet collision in congested forwarding area have emanated. Therefore, three different research problems were formulated to address the issue of reliability and energy efficiency in data forwarding in UWSN. First, void handling for packet entrapment in the void region, which generate delays and communication overhead. Second, non-optimal node selection that causes forwarding delays and non-reliable packet delivery. Third, collision due to congestion, which leads to packet drop and unreliable packet delivery. Thus, enhanced reliable and energy-efficient pressure-based data forwarding schemes for UWSN were developed, which are the Communication Void Avoidance (CVA) to estimate neighbour nodes availability outside a void region in order to avoid voids and reduce delay; a Multi-metric Evaluation mechanism for next forwarder Node Selection (MENS) for optimal packet delivery; and a Congestion Avoidance and MITigation (CAMIT) in data forwarding for congestion and collision reduction in order to achieve reliable data forwarding. Several experiments were performed through simulations to access the performance of the proposed mechanisms and the results of each scheme were compared with related previously published protocols. The obtained results depict that the proposed schemes outperformed the existing schemes and significantly improved overall performance. CVA improved Packet Delivery Ratio by 12.8% to 18.7% and reduced End-to-end delay by 7.3% to 12.5% on average. MENS improved communication Data Rate by 13.2% to 15.1% and Energy Consumption improved by 10.6% to 15.3% on average. Lastly, CAMIT reduced Packet Drop ratio by 10.2% to 13% on average. The findings demonstrate the improved efficiency has been achieved by the CVA, MENS and CAMIT in terms of optimal node selection and reliability in packet forwarding in UWSN

    Anomaly Detection in UASN Localization Based on Time Series Analysis and Fuzzy Logic

    Full text link
    [EN] Underwater acoustic sensor network (UASN) offers a promising solution for exploring underwater resources remotely. For getting a better understanding of sensed data, accurate localization is essential. As the UASN acoustic channel is open and the environment is hostile, the risk of malicious activities is very high, particularly in time-critical military applications. Since the location estimation with false data ends up in wrong positioning, it is necessary to identify and ignore such data to ensure data integrity. Therefore, in this paper, we propose a novel anomaly detection system for UASN localization. To minimize computational power and storage, we designed separate anomaly detection schemes for sensor nodes and anchor nodes. We propose an auto-regressive prediction-based scheme for detecting anomalies at sensor nodes. For anchor nodes, a fuzzy inference system is designed to identify the presence of anomalous behavior. The detection schemes are implemented at every node for enabling identification of multiple and duplicate anomalies at its origin. We simulated the network, modeled anomalies and analyzed the performance of detection schemes at anchor nodes and sensor nodes. The results indicate that anomaly detection systems offer an acceptable accuracy with high true positive rate and F-Score.Das, AP.; Thampi, SM.; Lloret, J. (2020). Anomaly Detection in UASN Localization Based on Time Series Analysis and Fuzzy Logic. Mobile Networks and Applications (Online). 25(1):55-67. https://doi.org/10.1007/s11036-018-1192-y556725

    Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    Get PDF
    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted

    FFRP: Dynamic firefly mating optimization inspired energy efficient routing protocol for internet of underwater wireless sensor networks

    Get PDF
    Energy-efficient and reliable data gathering using highly stable links in underwater wireless sensor networks (UWSNs) is challenging because of time and location-dependent communication characteristics of the acoustic channel. In this paper, we propose a novel dynamic firefly mating optimization inspired routing scheme called FFRP for the internet of UWSNs-based events monitoring applications. The proposed FFRP scheme during the events data gathering employs a self-learning based dynamic firefly mating optimization intelligence to find the highly stable and reliable routing paths to route packets around connectivity voids and shadow zones in UWSNs. The proposed scheme during conveying information minimizes the high energy consumption and latency issues by balancing the data traffic load evenly in a large-scale network. In additions, the data transmission over highly stable links between acoustic nodes increases the overall packets delivery ratio and network throughput in UWSNs. Several simulation experiments are carried out to verify the effectiveness of the proposed scheme against the existing schemes through NS2 and AquaSim 2.0 in UWSNs. The experimental outcomes show the better performance of the developed protocol in terms of high packets delivery ratio (PDR) and network throughput (NT) with low latency and energy consumption (EC) compared to existing routing protocols in UWSNs

    QoSRP: A cross-layer QoS channel-aware routing protocol for the internet of underwater acoustic sensor networks

    Get PDF
    Quality of service (QoS)-aware data gathering in static-channel based underwater wireless sensor networks (UWSNs) is severely limited due to location and time-dependent acoustic channel communication characteristics. This paper proposes a novel cross-layer QoS-aware multichannel routing protocol called QoSRP for the internet of UWSNs-based time-critical marine monitoring applications. The proposed QoSRP scheme considers the unique characteristics of the acoustic communication in highly dynamic network topology during gathering and relaying events data towards the sink. The proposed QoSRP scheme during the time-critical events data-gathering process employs three basic mechanisms, namely underwater channel detection (UWCD), underwater channel assignment (UWCA) and underwater packets forwarding (UWPF). The UWCD mechanism finds the vacant channels with a high probability of detection and low probability of missed detection and false alarms. The UWCA scheme assigns high data rates channels to acoustic sensor nodes (ASNs) with longer idle probability in a robust manner. Lastly, the UWPF mechanism during conveying information avoids congestion, data path loops and balances the data traffic load in UWSNs. The QoSRP scheme is validated through extensive simulations conducted by NS2 and AquaSim 2.0 in underwater environments (UWEs). The simulation results reveal that the QoSRP protocol performs better compared to existing routing schemes in UWSNs
    corecore