817 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    PSO-Tuned Pid Sliding Surface Of Sliding Mode Control For An Electro-Hydraulic Actuator System

    Get PDF
    It is well known that the control engineering applications are widely implemented in the industrial fields through the assistance of the Electro-Hydraulic Actuator (EHA) system. The EHA system is commonly exposed to the parameter variations, disturbances, and uncertainties, which are caused by the changes in the operating conditions including supply pressure, total moving mass, and friction. Thus, due to the changes and uncertain operating conditions, an optimization to the system’s controller is necessary in order to obtain a more robust system performance. This thesis presents the optimization on the Proportional- Integral-Derivative (PID) sliding surface of the Sliding Mode Control (SMC) scheme by using Particle Swarm Optimization (PSO) algorithm, applied to EHA system particularly for positioning tracking control. The EHA system is modelled according to the theories of the physical law, which taking into account the effect of nonlinearities, uncertainties, and disturbances occurred in the system. A robust control strategy is then formulated based on the control laws of the SMC, where the design of the sliding surface is integrated with the PID controller. The proposed control strategy is designed based on the EHA system that is subjected to the nonlinear characteristics and model uncertainties. Then, the PSO, which is based on the inspiration of the swarming behaviour has been utilized to seek for the optimum PID sliding surface parameters. The conventional tuning technique for the PID controller, which is known as Ziegler-Nichols (ZN) has been used to obtain the initial value of the PID sliding surface. Finally, the comparison has been made by applying the obtained parameters through the ZN and PSO tuning technique to the conventional PID controller and the PID sliding surface of the SMC. The findings indicate that the proposed robust SMC with PSOPID sliding surface is preserved to ensure the actuator robust and stable under the variation of the system operating condition, which produce 26% improvement in terms of robustness characteristic that gave a better positioning tracking performance and reduced the controller effort as compared to the conventional PID controller

    Optimization of PID for industrial electro-hydraulic actuator using PSOGSA

    Get PDF
    The Electro-hydraulic actuator (EHA) systems known to be extremely nonlinear due to its dynamic characteristics and these existing nonlinearities and uncertainties yield to the constraint in the control of EHA system, which influences the position tracking accuracy and affect the occurrences of leakage and friction in the system. The purpose of this work is to develop the mathematical model for the industrial electrohydraulic actuator, then to design a controller by proportional-integral-derivative (PID) and optimize the parameters using Particle Swarm Optimization - Gravitational Search Algorithm (PSOGSA). A few controllers such as conventional PID (CPID) and model reference adaptive control (MRAC) designed for comparison. The performance of PID, PID-PSOGSA and modern controller MRAC will be compared in order to determine the most efficient controller. Despite all controllers are capable to provide good performance, PID-PSOGSA control methods generate good response compared to PID and MRAC in term of positioning

    Implementation of Automatic DC Motor Braking PID Control System on (Disc Brakes)

    Get PDF
    The vital role of an automated braking system in ensuring the safety of motorized vehicles and their passengers cannot be overstated. It simplifies the braking process during driving, enhancing control and reducing the chances of accidents. This study is centered on the design of an automatic braking device for DC motors utilizing disc brakes. The instrument employed in this study was designed to accelerate the vehicle in two primary scenarios - before the collision with an obstacle and upon crossing the safety threshold. It achieves this by implementing the Proportional Integral Derivative (PID) control method. A significant part of this system comprises ultrasonic sensors, used for detecting the distance to obstructions, and rotary encoder sensors, which are utilized to measure the motor's rotational speed. These distance and speed readings serve as essential reference points for the braking process. The system is engineered to initiate braking when the distance value equals or falls below 60cm or when the speed surpasses 8000rpm. During such events, the disc brake is activated to reduce the motor's rotary motion. The suppression of the disc brake lever is executed pneumatically, informed by the sensor readings. Applying the PID method to the automatic braking system improved braking outcomes compared to a system without the PID method. This was proven by more effective braking results when the sensors detected specific distance and speed values. Numerous PID tuning tests achieved optimal results with K_p = 5, K_i = 1, and K_d = 3. These values can be integrated into automatic braking systems for improved performance. The PID method yielded more responsive braking outcomes when applied in distance testing. On the contrary, the braking results were largely unchanged in the absence of PID. Regarding speed testing, the PID method significantly improved the slowing down of the motor speed when it exceeded the maximum speed limit of 8000 rpm. This eliminates the possibility of sudden braking, thus maintaining the system within a safe threshold. The average time taken by the system to apply braking was 01.09 seconds, an indication of its quick responsiveness. This research is a valuable addition to control science, applying the PID control method to automatic DC motor braking. It provides valuable insights and concrete applications of PID control to complex mechatronic systems. It is also noteworthy for its development and optimization of suitable PID parameters to achieve responsive and stable braking. The study, therefore, offers a profound understanding of how PID control can be employed to manage braking systems on automatic DC motors, thereby advancing knowledge and application of control in control science and mechatronics

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Impedance control of a hydraulic servomechanism

    Get PDF
    Mestrado em Engenharia MecânicaNo presente trabalho é proposto e implementado um controlador de impedância baseado na posição para o controlo de um cilindro, instalado numa prensa hidráulica, comandado por uma servoválvula actuada por solenóide. Foram inicialmente desenvolvidos controladores de posição, controlador PID e controlador baseado em lógica difusa, com os requisitos de precisão adequados à implementação do controlador de impedância baseado na posição. O filtro de impedância foi colocado na malha de realimentação de força para modificar a trajectória do actuador hidráulico de acordo com o comportamento especificado. Simultaneamente com as experiências na prensa hidráulica, o controlo de impedância foi experimentado em ambiente totalmente simulado recorrendo a um modelo não linear de todo o sistema hidráulico (cilindro + servoválvula). Foram realizadas várias experiências em espaço livre e em contacto com o ambiente. Foram conseguidos resultados satisfatórios em ambas as situações bem como na transição de não-contacto para contacto com o ambiente. ABSTRACT: A position-based impedance controller is proposed and demonstrated on an existing hydraulic press with a two-way vertically mounted hydraulic cylinder driven by a servo-solenoid valve. A proportional-integral-derivative (PID) controller and a Fuzzy Logic Controller (FLC) are primarily developed to meet the accurate positioning requirements of the impedance control formulation. The impedance filter was placed in force-feedback loop to modify a desired trajectory of the hydraulic actuator according to a specified behavior. Simultaneously with the experiment conducted on the real hydraulic press, impedance control was performed in computer simulation with the use of a nonlinear model of the whole hydraulic system (cylinder + servo solenoid valve). Experiments were carried out in free space and with environmental contact. Satisfactory results were achieved in both situations, as well as in noncontact/ contact transition

    Powertrain modelling for engine stop-start dynamics and control of micro/mild hybrid construction machines

    Get PDF
    Engine stop-start control is considered as the key technology for micro/mild hybridisation of vehicles and machines. To utilize this concept, especially for construction machines, the engine is desired to be started in such a way that the operator discomfort can be minimized. To address this issue, this paper aims to develop a simple powertrain modelling approach for engine stop-start dynamic analysis and an advanced engine start control scheme newly applicable for micro/mild hybrid construction machines. First, a powertrain model of a generic construction machine is mathematically developed in a general form which allows to investigate the transient responses of the system during the engine cranking process. Second, a simple parameterisation procedure with a minimum set of data required to characterise the dynamic model is presented. Third, a model- based adaptive controller is designed for the starter to crank the engine quickly and smoothly without the need of fuel injection while the critical problems of machine noise, vibration and harshness can be eliminated. Finally, the advantages and effectiveness of the proposed modelling and control approaches have been validated through numerical simulations. The results imply that with the limited data set for training, the developed model works better than a high fidelity model built in AMESim while the adaptive controller can guarantee the desired cranking performance
    corecore