951 research outputs found

    Confidentiality-Preserving Publish/Subscribe: A Survey

    Full text link
    Publish/subscribe (pub/sub) is an attractive communication paradigm for large-scale distributed applications running across multiple administrative domains. Pub/sub allows event-based information dissemination based on constraints on the nature of the data rather than on pre-established communication channels. It is a natural fit for deployment in untrusted environments such as public clouds linking applications across multiple sites. However, pub/sub in untrusted environments lead to major confidentiality concerns stemming from the content-centric nature of the communications. This survey classifies and analyzes different approaches to confidentiality preservation for pub/sub, from applications of trust and access control models to novel encryption techniques. It provides an overview of the current challenges posed by confidentiality concerns and points to future research directions in this promising field

    Asynchronous neighborhood task synchronization

    Full text link
    Faults are likely to occur in distributed systems. The motivation for designing self-stabilizing system is to be able to automatically recover from a faulty state. As per Dijkstra\u27s definition, a system is self-stabilizing if it converges to a desired state from an arbitrary state in a finite number of steps. The paradigm of self-stabilization is considered to be the most unified approach to designing fault-tolerant systems. Any type of faults, e.g., transient, process crashes and restart, link failures and recoveries, and byzantine faults, can be handled by a self-stabilizing system; Many applications in distributed systems involve multiple phases. Solving these applications require some degree of synchronization of phases. In this thesis research, we introduce a new problem, called asynchronous neighborhood task synchronization ( NTS ). In this problem, processes execute infinite instances of tasks, where a task consists of a set of steps. There are several requirements for this problem. Simultaneous execution of steps by the neighbors is allowed only if the steps are different. Every neighborhood is synchronized in the sense that all neighboring processes execute the same instance of a task. Although the NTS problem is applicable in nonfaulty environments, it is more challenging to solve this problem considering various types of faults. In this research, we will present a self-stabilizing solution to the NTS problem. The proposed solution is space optimal, fault containing, fully localized, and fully distributed. One of the most desirable properties of our algorithm is that it works under any (including unfair) daemon. We will discuss various applications of the NTS problem

    Self-stabilizing protocol for anonymous oriented bi-directional rings under unfair distributed schedulers with a leader

    Full text link
    We propose a self-stabilizing protocol for anonymous oriented bi-directional rings of any size under unfair distributed schedulers with a leader. The protocol is a randomized self-stabilizing, meaning that starting from an arbitrary configuration it converges (with probability 1) in finite time to a legitimate configuration (i.e. global system state) without the need for explicit exception handler of backward recovery. A fault may throw the system into an illegitimate configuration, but the system will autonomously resume a legitimate configuration, by regarding the current illegitimate configuration as an initial configuration, if the fault is transient. A self-stabilizing system thus tolerates any kind and any finite number of transient faults. The protocol can be used to implement an unfair distributed mutual exclusion in any ring topology network; Keywords: self-stabilizing protocol, anonymous oriented bi-directional ring, unfair distributed schedulers. Ring topology network, non-uniform and anonymous network, self-stabilization, fault tolerance, legitimate configuration

    The embedded operating system project

    Get PDF
    This progress report describes research towards the design and construction of embedded operating systems for real-time advanced aerospace applications. The applications concerned require reliable operating system support that must accommodate networks of computers. The report addresses the problems of constructing such operating systems, the communications media, reconfiguration, consistency and recovery in a distributed system, and the issues of realtime processing. A discussion is included on suitable theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based systems. In particular, this report addresses: atomic actions, fault tolerance, operating system structure, program development, reliability and availability, and networking issues. This document reports the status of various experiments designed and conducted to investigate embedded operating system design issues

    Peer-to-Peer Networks and Computation: Current Trends and Future Perspectives

    Get PDF
    This research papers examines the state-of-the-art in the area of P2P networks/computation. It attempts to identify the challenges that confront the community of P2P researchers and developers, which need to be addressed before the potential of P2P-based systems, can be effectively realized beyond content distribution and file-sharing applications to build real-world, intelligent and commercial software systems. Future perspectives and some thoughts on the evolution of P2P-based systems are also provided

    Formal verification: further complexity issues and applications

    Get PDF
    Prof. Giacomo Cioffi (Università di Roma "La Sapienza"), Prof. Fabio Panzieri (Università di Bologna), Dott.ssa Carla Limongelli (Università di Roma Tre)
    corecore