1,018 research outputs found

    Preserving Piece-wise Linearity in Fuzzy Interpolation

    Get PDF
    Fuzzy interpolative reasoning serves as an important role in fuzzy modelling as it does not only help reduce rule number but also provides an inference mechanisn for sparse rule base

    Mathematical programming for piecewise linear regression analysis

    Get PDF
    In data mining, regression analysis is a computational tool that predicts continuous output variables from a number of independent input variables, by approximating their complex inner relationship. A large number of methods have been successfully proposed, based on various methodologies, including linear regression, support vector regression, neural network, piece-wise regression, etc. In terms of piece-wise regression, the existing methods in literature are usually restricted to problems of very small scale, due to their inherent non-linear nature. In this work, a more efficient piece-wise linear regression method is introduced based on a novel integer linear programming formulation. The proposed method partitions one input variable into multiple mutually exclusive segments, and fits one multivariate linear regression function per segment to minimise the total absolute error. Assuming both the single partition feature and the number of regions are known, the mixed integer linear model is proposed to simultaneously determine the locations of multiple break-points and regression coefficients for each segment. Furthermore, an efficient heuristic procedure is presented to identify the key partition feature and final number of break-points. 7 real world problems covering several application domains have been used to demonstrate the efficiency of our proposed method. It is shown that our proposed piece-wise regression method can be solved to global optimality for datasets of thousands samples, which also consistently achieves higher prediction accuracy than a number of state-of-the-art regression methods. Another advantage of the proposed method is that the learned model can be conveniently expressed as a small number of if-then rules that are easily interpretable. Overall, this work proposes an efficient rule-based multivariate regression method based on piece-wise functions and achieves better prediction performance than state-of-the-arts approaches. This novel method can benefit expert systems in various applications by automatically acquiring knowledge from databases to improve the quality of knowledge base

    Some Considerations and a Benchmark Related to the CNF Property of the Koczy-Hirota Fuzzy Rule Interpolation

    Get PDF
    The goal of this paper is twofold. Once to highlight some basic problematic properties of the KH Fuzzy Rule Interpolation through examples, secondly to set up a brief Benchmark set of Examples, which is suitable for testing other Fuzzy Rule Interpolation (FRI) methods against these ill conditions. Fuzzy Rule Interpolation methods were originally proposed to handle the situation of missing fuzzy rules (sparse rule-bases) and to reduce the decision complexity. Fuzzy Rule Interpolation is an important technique for implementing inference with sparse fuzzy rule-bases. Even if a given observation has no overlap with the antecedent of any rule from the rule-base, FRI may still conclude a conclusion. The first FRI method was the Koczy and Hirota proposed "Linear Interpolation", which was later renamed to "KH Fuzzy Interpolation" by the followers. There are several conditions and criteria have been suggested for unifying the common requirements an FRI methods have to satisfy. One of the most common one is the demand for a convex and normal fuzzy (CNF) conclusion, if all the rule antecedents and consequents are CNF sets. The KH FRI is the one, which cannot fulfill this condition. This paper is focusing on the conditions, where the KH FRI fails the demand for the CNF conclusion. By setting up some CNF rule examples, the paper also defines a Benchmark, in which other FRI methods can be tested if they can produce CNF conclusion where the KH FRI fails

    Piecewise Linear Control Systems

    Get PDF
    This thesis treats analysis and design of piecewise linear control systems. Piecewise linear systems capture many of the most common nonlinearities in engineering systems, and they can also be used for approximation of other nonlinear systems. Several aspects of linear systems with quadratic constraints are generalized to piecewise linear systems with piecewise quadratic constraints. It is shown how uncertainty models for linear systems can be extended to piecewise linear systems, and how these extensions give insight into the classical trade-offs between fidelity and complexity of a model. Stability of piecewise linear systems is investigated using piecewise quadratic Lyapunov functions. Piecewise quadratic Lyapunov functions are much more powerful than the commonly used quadratic Lyapunov functions. It is shown how piecewise quadratic Lyapunov functions can be computed via convex optimization in terms of linear matrix inequalities. The computations are based on a compact parameterization of continuous piecewise quadratic functions and conditional analysis using the S-procedure. A unifying framework for computation of a variety of Lyapunov functions via convex optimization is established based on this parameterization. Systems with attractive sliding modes and systems with bounded regions of attraction are also treated. Dissipativity analysis and optimal control problems with piecewise quadratic cost functions are solved via convex optimization. The basic results are extended to fuzzy systems, hybrid systems and smooth nonlinear systems. It is shown how Lyapunov functions with a discontinuous dependence on the discrete state can be computed via convex optimization. An automated procedure for increasing the flexibility of the Lyapunov function candidate is suggested based on linear programming duality. A Matlab toolbox that implements several of the results derived in the thesis is presented

    Adaptive fuzzy interpolation

    Get PDF
    Fuzzy interpolative reasoning strengthens the power of fuzzy inference by the enhancement of the robustness of fuzzy systems and the reduction of the systems' complexity. However, after a series of interpolations, it is possible that multiple object values for a common variable are inferred, leading to inconsistency in interpolated results. Such inconsistencies may result from defective interpolated rules or incorrect interpolative transformations. This paper presents a novel approach for identification and correction of defective rules in interpolative transformations, thereby removing the inconsistencies. In particular, an assumption-based truth-maintenance system (ATMS) is used to record dependences between interpolations, and the underlying technique that the classical general diagnostic engine (GDE) employs for fault localization is adapted to isolate possible faulty interpolated rules and their associated interpolative transformations. From this, an algorithm is introduced to allow for the modification of the original linear interpolation to become first-order piecewise linear. The approach is applied to a realistic problem, which predicates the diarrheal disease rates in remote villages, to demonstrate the potential of this study
    • …
    corecore