84 research outputs found

    Hiding mobile traffic fingerprints with GLOVE

    Get PDF
    Proceeding of: 11th ACM Conference on Emerging Networking Experiments and Technologies ACM (CoNEXT 2015), Heidelberg, Germany, 1-4 December 2015Preservation of user privacy is paramount in the publication of datasets that contain fine-grained information about individuals. The problem is especially critical in the case of mobile traffic datasets collected by cellular operators, as they feature high subscriber trajectory uniqueness and they are resistant to anonymization through spatiotemporal generalization. In this work, we first unveil the reasons behind such undesirable features of mobile traffic datasets, by leveraging an original measure of the anonymizability of users' mobile fingerprints. Building on such findings, we propose GLOVE, an algorithm that grants k-anonymity of trajectories through specialized generalization. We evaluate our methodology on two nationwide mobile traffic datasets, and show that it achieves k-anonymity while preserving a substantial level of accuracy in the data.This work was supported by the French National Research Agency under grant ANR-13-INFR-0005 ABCD and by the EU FP7 ERA-NET program under grant CHIST-ERA-2012 MACACO

    GLOVE: towards privacy-preserving publishing of record-level-truthful mobile phone trajectories

    Get PDF
    Datasets of mobile phone trajectories collected by network operators offer an unprecedented opportunity to discover new knowledge from the activity of large populations of millions. However, publishing such trajectories also raises significant privacy concerns, as they contain personal data in the form of individual movement patterns. Privacy risks induce network operators to enforce restrictive confidential agreements in the rare occasions when they grant access to collected trajectories, whereas a less involved circulation of these data would fuel research and enable reproducibility in many disciplines. In this work, we contribute a building block toward the design of privacy-preserving datasets of mobile phone trajectories that are truthful at the record level. We present GLOVE, an algorithm that implements k-anonymity, hence solving the crucial unicity problem that affects this type of data while ensuring that the anonymized trajectories correspond to real-life users. GLOVE builds on original insights about the root causes behind the undesirable unicity of mobile phone trajectories, and leverages generalization and suppression to remove them. Proof-of-concept validations with large-scale real-world datasets demonstrate that the approach adopted by GLOVE allows preserving a substantial level of accuracy in the data, higher than that granted by previous methodologies.This work was supported by the AtracciĂłn de Talento Investigador program of the Comunidad de Madrid under Grant No. 2019-T1/TIC-16037 NetSense

    Privacy in trajectory micro-data publishing : a survey

    Get PDF
    We survey the literature on the privacy of trajectory micro-data, i.e., spatiotemporal information about the mobility of individuals, whose collection is becoming increasingly simple and frequent thanks to emerging information and communication technologies. The focus of our review is on privacy-preserving data publishing (PPDP), i.e., the publication of databases of trajectory micro-data that preserve the privacy of the monitored individuals. We classify and present the literature of attacks against trajectory micro-data, as well as solutions proposed to date for protecting databases from such attacks. This paper serves as an introductory reading on a critical subject in an era of growing awareness about privacy risks connected to digital services, and provides insights into open problems and future directions for research.Comment: Accepted for publication at Transactions for Data Privac

    Protecting privacy of semantic trajectory

    Get PDF
    The growing ubiquity of GPS-enabled devices in everyday life has made large-scale collection of trajectories feasible, providing ever-growing opportunities for human movement analysis. However, publishing this vulnerable data is accompanied by increasing concerns about individuals’ geoprivacy. This thesis has two objectives: (1) propose a privacy protection framework for semantic trajectories and (2) develop a Python toolbox in ArcGIS Pro environment for non-expert users to enable them to anonymize trajectory data. The former aims to prevent users’ re-identification when knowing the important locations or any random spatiotemporal points of users by swapping their important locations to new locations with the same semantics and unlinking the users from their trajectories. This is accomplished by converting GPS points into sequences of visited meaningful locations and moves and integrating several anonymization techniques. The second component of this thesis implements privacy protection in a way that even users without deep knowledge of anonymization and coding skills can anonymize their data by offering an all-in-one toolbox. By proposing and implementing this framework and toolbox, we hope that trajectory privacy is better protected in research

    Privacy in trajectory micro-data publishing: a survey

    Get PDF
    International audienceWe survey the literature on the privacy of trajectory micro-data, i.e., spatiotemporal information about the mobility of individuals, whose collection is becoming increasingly simple and frequent thanks to emerging information and communication technologies. The focus of our review is on privacy-preserving data publishing (PPDP), i.e., the publication of databases of trajectory micro-data that preserve the privacy of the monitored individuals. We classify and present the literature of attacks against trajectory micro-data, as well as solutions proposed to date for protecting databases from such attacks. This paper serves as an introductory reading on a critical subject in an era of growing awareness about privacy risks connected to digital services, and provides insights into open problems and future directions for research

    A survey on privacy in human mobility

    Get PDF
    In the last years we have witnessed a pervasive use of location-aware technologies such as vehicular GPS-enabled devices, RFID based tools, mobile phones, etc which generate collection and storing of a large amount of human mobility data. The powerful of this data has been recognized by both the scientific community and the industrial worlds. Human mobility data can be used for different scopes such as urban traffic management, urban planning, urban pollution estimation, etc. Unfortunately, data describing human mobility is sensitive, because people's whereabouts may allow re-identification of individuals in a de-identified database and the access to the places visited by indi-viduals may enable the inference of sensitive information such as religious belief, sexual preferences, health conditions, and so on. The literature reports many approaches aimed at overcoming privacy issues in mobility data, thus in this survey we discuss the advancements on privacy-preserving mo-bility data publishing. We first describe the adversarial attack and privacy models typically taken into consideration for mobility data, then we present frameworks for the privacy risk assessment and finally, we discuss three main categories of privacy-preserving strategies: methods based on anonymization of mobility data, methods based on the differential privacy models and methods which protect privacy by exploiting generative models for synthetic trajectory generation
    • …
    corecore