1,202 research outputs found

    Preserving brightness in histogram equalization based contrast enhancement techniques

    Get PDF
    Histogram equalization (HE) has been a simple yet effective image enhancement technique. However, it tends to change the brightness of an image significantly, causing annoying artifacts and unnatural contrast enhancement. Brightness preserving bi-histogram equalization (BBHE) and dualistic sub-image histogram equalization (DSIHE) have been proposed to overcome these problems but they may still fail under certain conditions. This paper proposes a novel extension of BBHE referred to as minimum mean brightness error bi-histogram equalization (MMBEBHE). MMBEBHE has the feature of minimizing the difference between input and output image's mean. Simulation results showed that MMBEBHE can preserve brightness better than BBHE and DSIHE. Furthermore, this paper also formulated an efficient, integer-based implementation of MMBEBHE. Nevertheless, MMBEBHE also has its limitation. Hence, this paper further proposes a generalization of BBHE referred to as recursive mean-separate histogram equalization (RMSHE). RMSHE is featured with scalable brightness preservation. Simulation results showed that RMSHE is the best compared to HE, BBHE, DSIHE, and MMBEBHE

    MedGA: A novel evolutionary method for image enhancement in medical imaging systems

    Get PDF
    Medical imaging systems often require the application of image enhancement techniques to help physicians in anomaly/abnormality detection and diagnosis, as well as to improve the quality of images that undergo automated image processing. In this work we introduce MedGA, a novel image enhancement method based on Genetic Algorithms that is able to improve the appearance and the visual quality of images characterized by a bimodal gray level intensity histogram, by strengthening their two underlying sub-distributions. MedGA can be exploited as a pre-processing step for the enhancement of images with a nearly bimodal histogram distribution, to improve the results achieved by downstream image processing techniques. As a case study, we use MedGA as a clinical expert system for contrast-enhanced Magnetic Resonance image analysis, considering Magnetic Resonance guided Focused Ultrasound Surgery for uterine fibroids. The performances of MedGA are quantitatively evaluated by means of various image enhancement metrics, and compared against the conventional state-of-the-art image enhancement techniques, namely, histogram equalization, bi-histogram equalization, encoding and decoding Gamma transformations, and sigmoid transformations. We show that MedGA considerably outperforms the other approaches in terms of signal and perceived image quality, while preserving the input mean brightness. MedGA may have a significant impact in real healthcare environments, representing an intelligent solution for Clinical Decision Support Systems in radiology practice for image enhancement, to visually assist physicians during their interactive decision-making tasks, as well as for the improvement of downstream automated processing pipelines in clinically useful measurements

    Image enhancement using fuzzy intensity measure and adaptive clipping histogram equalization

    Get PDF
    Image enhancement aims at processing an input image so that the visual content of the output image is more pleasing or more useful for certain applications. Although histogram equalization is widely used in image enhancement due to its simplicity and effectiveness, it changes the mean brightness of the enhanced image and introduces a high level of noise and distortion. To address these problems, this paper proposes image enhancement using fuzzy intensity measure and adaptive clipping histogram equalization (FIMHE). FIMHE uses fuzzy intensity measure to first segment the histogram of the original image, and then clip the histogram adaptively in order to prevent excessive image enhancement. Experiments on the Berkeley database and CVF-UGR-Image database show that FIMHE outperforms state-of-the-art histogram equalization based methods
    corecore