56 research outputs found

    Preserving Link Privacy in Social Network Based Systems

    Full text link
    A growing body of research leverages social network based trust relationships to improve the functionality of the system. However, these systems expose users' trust relationships, which is considered sensitive information in today's society, to an adversary. In this work, we make the following contributions. First, we propose an algorithm that perturbs the structure of a social graph in order to provide link privacy, at the cost of slight reduction in the utility of the social graph. Second we define general metrics for characterizing the utility and privacy of perturbed graphs. Third, we evaluate the utility and privacy of our proposed algorithm using real world social graphs. Finally, we demonstrate the applicability of our perturbation algorithm on a broad range of secure systems, including Sybil defenses and secure routing.Comment: 16 pages, 15 figure

    Injecting Uncertainty in Graphs for Identity Obfuscation

    Full text link
    Data collected nowadays by social-networking applications create fascinating opportunities for building novel services, as well as expanding our understanding about social structures and their dynamics. Unfortunately, publishing social-network graphs is considered an ill-advised practice due to privacy concerns. To alleviate this problem, several anonymization methods have been proposed, aiming at reducing the risk of a privacy breach on the published data, while still allowing to analyze them and draw relevant conclusions. In this paper we introduce a new anonymization approach that is based on injecting uncertainty in social graphs and publishing the resulting uncertain graphs. While existing approaches obfuscate graph data by adding or removing edges entirely, we propose using a finer-grained perturbation that adds or removes edges partially: this way we can achieve the same desired level of obfuscation with smaller changes in the data, thus maintaining higher utility. Our experiments on real-world networks confirm that at the same level of identity obfuscation our method provides higher usefulness than existing randomized methods that publish standard graphs.Comment: VLDB201

    A comparison of clustering and modification based graph anonymization methods with constraints

    Get PDF
    In this paper a comparison is performed on two of the key methods for graph anonymization and their behavior is evaluated when constraints are incorporated into the anonymization process. The two methods tested are node clustering and node modification and are applied to online social network (OSN) graph datasets. The constraints implement user defined utility requirements for the community structure of the graph and major hub nodes. The methods are benchmarked using three real OSN datasets and different levels of k?anonymity. The results show that the constraints reduce the information loss while incurring an acceptable disclosure risk. Overall, it is found that the modification method with constraints gives the best results for information loss and risk of disclosure.This research is partially supported by the Spanish MEC (projects ARES CONSOLIDER INGENIO 2010 CSD2007-00004 -- eAEGIS TSI2007-65406-C03-02 -- and HIPERGRAPH TIN2009-14560-C03-01)Peer Reviewe
    corecore