47,980 research outputs found

    Possibilistic Information Flow Control for Workflow Management Systems

    Full text link
    In workflows and business processes, there are often security requirements on both the data, i.e. confidentiality and integrity, and the process, e.g. separation of duty. Graphical notations exist for specifying both workflows and associated security requirements. We present an approach for formally verifying that a workflow satisfies such security requirements. For this purpose, we define the semantics of a workflow as a state-event system and formalise security properties in a trace-based way, i.e. on an abstract level without depending on details of enforcement mechanisms such as Role-Based Access Control (RBAC). This formal model then allows us to build upon well-known verification techniques for information flow control. We describe how a compositional verification methodology for possibilistic information flow can be adapted to verify that a specification of a distributed workflow management system satisfies security requirements on both data and processes.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Safe abstractions of data encodings in formal security protocol models

    Get PDF
    When using formal methods, security protocols are usually modeled at a high level of abstraction. In particular, data encoding and decoding transformations are often abstracted away. However, if no assumptions at all are made on the behavior of such transformations, they could trivially lead to security faults, for example leaking secrets or breaking freshness by collapsing nonces into constants. In order to address this issue, this paper formally states sufficient conditions, checkable on sequential code, such that if an abstract protocol model is secure under a Dolev-Yao adversary, then a refined model, which takes into account a wide class of possible implementations of the encoding/decoding operations, is implied to be secure too under the same adversary model. The paper also indicates possible exploitations of this result in the context of methods based on formal model extraction from implementation code and of methods based on automated code generation from formally verified model

    Concurrent Design of Embedded Control Software

    Get PDF
    Embedded software design for mechatronic systems is becoming an increasingly time-consuming and error-prone task. In order to cope with the heterogeneity and complexity, a systematic model-driven design approach is needed, where several parts of the system can be designed concurrently. There is however a trade-off between concurrency efficiency and integration efficiency. In this paper, we present a case study on the development of the embedded control software for a real-world mechatronic system in order to evaluate how we can integrate concurrent and largely independent designed embedded system software parts in an efficient way. The case study was executed using our embedded control system design methodology which employs a concurrent systematic model-based design approach that ensures a concurrent design process, while it still allows a fast integration phase by using automatic code synthesis. The result was a predictable concurrently designed embedded software realization with a short integration time

    Consistency in Multi-Viewpoint Architectural Design of Enterprise Information Systems

    Get PDF
    Different stakeholders in the design of an enterprise information system have their own view on that design. To help produce a coherent design this paper presents a framework that aids in specifying relations between such views. To help produce a consistent design the framework also aids in specifying consistency rules that apply to the view relations and in checking the consistency according to those rules. The framework focuses on the higher levels of abstraction in a design, we refer to design at those levels of abstraction as architectural design. The highest level of abstraction that we consider is that of business process design and the lowest level is that of software component design. The contribution of our framework is that it provides a collection of basic concepts that is common to viewpoints in the area of enterprise information systems. These basic concepts aid in relating viewpoints by providing: (i) a common terminology that helps stakeholders to understand each others concepts; and (ii) a basis for defining re-usable consistency rules. In particular we define re-usable rules to check consistency between behavioural views that overlap or are a refinement of each other. We also present an architecture for a tool suite that supports our framework. We show that our framework can be applied, by performing a case study in which we specify the relations and consistency rules between the RM-ODP enterprise, computational and information viewpoints
    corecore