532 research outputs found

    Total order broadcast for fault tolerant exascale systems

    Full text link
    In the process of designing a new fault tolerant run-time for future exascale systems, we discovered that a total order broadcast would be necessary. That is, nodes of a supercomputer should be able to broadcast messages to other nodes even in the face of failures. All messages should be seen in the same order at all nodes. While this is a well studied problem in distributed systems, few researchers have looked at how to perform total order broadcasts at large scales for data availability. Our experience implementing a published total order broadcast algorithm showed poor scalability at tens of nodes. In this paper we present a novel algorithm for total order broadcast which scales logarithmically in the number of processes and is not delayed by most process failures. While we are motivated by the needs of our run-time we believe this primitive is of general applicability. Total order broadcasts are used often in datacenter environments and as HPC developers begins to address fault tolerance at the application level we believe they will need similar primitives

    Supporting automatic recovery in offloaded distributed programming models through MPI-3 techniques

    Get PDF
    In this paper we describe the design of fault tolerance capabilities for general-purpose offload semantics, based on the OmpSs programming model. Using ParaStation MPI, a production MPI-3.1 implementation, we explore the features that, being standard compliant, an MPI stack must support to provide the necessary fault tolerance guarantees, based on MPI's dynamic process management. Our results, including synthetic benchmarks and applications, reveal low runtime overhead and efficient recovery, demonstrating that the existing MPI standard provided us with sufficient mechanisms to implement an effective and efficient fault-tolerant solution.This research received funding from the European Community’s 7th Framework Programme via the DEEP-ER project under Grant Agreement no. 610476. This work has also been supported by the Spanish Ministry of Science and Innovation (contract TIN2012-34557) and by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). Antonio J. Peña is cofinanced by the Spanish Ministry of Economy and Competitiveness under Juan de la Cierva fellowship number IJCI-2015-23266. The authors thank Jorge Bell´on, from BSC, for his technical support with the Nanos++ internals.Peer ReviewedPostprint (author's final draft

    Shrink or Substitute: Handling Process Failures in HPC Systems using In-situ Recovery

    Full text link
    Efficient utilization of today's high-performance computing (HPC) systems with complex hardware and software components requires that the HPC applications are designed to tolerate process failures at runtime. With low mean time to failure (MTTF) of current and future HPC systems, long running simulations on these systems require capabilities for gracefully handling process failures by the applications themselves. In this paper, we explore the use of fault tolerance extensions to Message Passing Interface (MPI) called user-level failure mitigation (ULFM) for handling process failures without the need to discard the progress made by the application. We explore two alternative recovery strategies, which use ULFM along with application-driven in-memory checkpointing. In the first case, the application is recovered with only the surviving processes, and in the second case, spares are used to replace the failed processes, such that the original configuration of the application is restored. Our experimental results demonstrate that graceful degradation is a viable alternative for recovery in environments where spares may not be available.Comment: 26th Euromicro International Conference on Parallel, Distributed and network-based Processing (PDP 2018

    Checkpointing of parallel applications in a Grid environment

    Get PDF
    The Grid environment is generic, heterogeneous, and dynamic with lots of unreliable resources making it very exposed to failures. The environment is unreliable because it is geographically dispersed involving multiple autonomous administrative domains and it is composed of a large number of components. Examples of failures in the Grid environment can be: application crash, Grid node crash, network failures, and Grid system component failures. These types of failures can affect the execution of parallel/distributed application in the Grid environment and so, protections against these faults are crucial. Therefore, it is essential to develop efficient fault tolerant mechanisms to allow users to successfully execute Grid applications. One of the research challenges in Grid computing is to be able to develop a fault tolerant solution that will ensure Grid applications are executed reliably with minimum overhead incurred. While checkpointing is the most common method to achieve fault tolerance, there is still a lot of work to be done to improve the efficiency of the mechanism. This thesis provides an in-depth description of a novel solution for checkpointing parallel applications executed on a Grid. The checkpointing mechanism implemented allows to checkpoint an application at regions where there is no interprocess communication involved and therefore reducing the checkpointing overhead and checkpoint size

    Application-level Fault Tolerance and Resilience in HPC Applications

    Get PDF
    Programa Oficial de Doutoramento en Investigación en Tecnoloxías da Información. 524V01[Resumo] As necesidades computacionais das distintas ramas da ciencia medraron enormemente nos últimos anos, o que provocou un gran crecemento no rendemento proporcionado polos supercomputadores. Cada vez constrúense sistemas de computación de altas prestacións de maior tamaño, con máis recursos hardware de distintos tipos, o que fai que as taxas de fallo destes sistemas tamén medren. Polo tanto, o estudo de técnicas de tolerancia a fallos eficientes é indispensábel para garantires que os programas científicos poidan completar a súa execución, evitando ademais que se dispare o consumo de enerxía. O checkpoint/restart é unha das técnicas máis populares. Sen embargo, a maioría da investigación levada a cabo nas últimas décadas céntrase en estratexias stop-and-restart para aplicacións de memoria distribuída tralo acontecemento dun fallo-parada. Esta tese propón técnicas checkpoint/restart a nivel de aplicación para os modelos de programación paralela roáis populares en supercomputación. Implementáronse protocolos de checkpointing para aplicacións híbridas MPI-OpenMP e aplicacións heteroxéneas baseadas en OpenCL, en ámbolos dous casos prestando especial coidado á portabilidade e maleabilidade da solución. En canto a aplicacións de memoria distribuída, proponse unha solución de resiliencia que pode ser empregada de forma xenérica en aplicacións MPI SPMD, permitindo detectar e reaccionar a fallos-parada sen abortar a execución. Neste caso, os procesos fallidos vólvense a lanzar e o estado da aplicación recupérase cunha volta atrás global. A maiores, esta solución de resiliencia optimizouse implementando unha volta atrás local, na que só os procesos fallidos volven atrás, empregando un protocolo de almacenaxe de mensaxes para garantires a consistencia e o progreso da execución. Por último, propónse a extensión dunha librería de checkpointing para facilitares a implementación de estratexias de recuperación ad hoc ante conupcións de memoria. En moitas ocasións, estos erros poden ser xestionados a nivel de aplicación, evitando desencadear un fallo-parada e permitindo unha recuperación máis eficiente.[Resumen] El rápido aumento de las necesidades de cómputo de distintas ramas de la ciencia ha provocado un gran crecimiento en el rendimiento ofrecido por los supercomputadores. Cada vez se construyen sistemas de computación de altas prestaciones mayores, con más recursos hardware de distintos tipos, lo que hace que las tasas de fallo del sistema aumenten. Por tanto, el estudio de técnicas de tolerancia a fallos eficientes resulta indispensable para garantizar que los programas científicos puedan completar su ejecución, evitando además que se dispare el consumo de energía. La técnica checkpoint/restart es una de las más populares. Sin embargo, la mayor parte de la investigación en este campo se ha centrado en estrategias stop-and-restart para aplicaciones de memoria distribuida tras la ocurrencia de fallos-parada. Esta tesis propone técnicas checkpoint/restart a nivel de aplicación para los modelos de programación paralela más populares en supercomputación. Se han implementado protocolos de checkpointing para aplicaciones híbridas MPI-OpenMP y aplicaciones heterogéneas basadas en OpenCL, prestando en ambos casos especial atención a la portabilidad y la maleabilidad de la solución. Con respecto a aplicaciones de memoria distribuida, se propone una solución de resiliencia que puede ser usada de forma genérica en aplicaciones MPI SPMD, permitiendo detectar y reaccionar a fallosparada sin abortar la ejecución. En su lugar, se vuelven a lanzar los procesos fallidos y se recupera el estado de la aplicación con una vuelta atrás global. A mayores, esta solución de resiliencia ha sido optimizada implementando una vuelta atrás local, en la que solo los procesos fallidos vuelven atrás, empleando un protocolo de almacenaje de mensajes para garantizar la consistencia y el progreso de la ejecución. Por último, se propone una extensión de una librería de checkpointing para facilitar la implementación de estrategias de recuperación ad hoc ante corrupciones de memoria. Muchas veces, este tipo de errores puede gestionarse a nivel de aplicación, evitando desencadenar un fallo-parada y permitiendo una recuperación más eficiente.[Abstract] The rapid increase in the computational demands of science has lead to a pronounced growth in the performance offered by supercomputers. As High Performance Computing (HPC) systems grow larger, including more hardware components of different types, the system's failure rate becomes higher. Efficient fault tolerance techniques are essential not only to ensure the execution completion but also to save energy. Checkpoint/restart is one of the most popular fault tolerance techniques. However, most of the research in this field is focused on stop-and-restart strategies for distributed-memory applications in the event of fail-stop failures. Thís thesis focuses on the implementation of application-level checkpoint/restart solutions for the most popular parallel programming models used in HPC. Hence, we have implemented checkpointing solutions to cope with fail-stop failures in hybrid MPI-OpenMP applications and OpenCL-based programs. Both strategies maximize the restart portability and malleability, ie., the recovery can take place on machines with different CPU / accelerator architectures, and/ or operating systems, and can be adapted to the available resources (number of cores/accelerators). Regarding distributed-memory applications, we propose a resilience solution that can be generally applied to SPMD MPI programs. Resilient applications can detect and react to failures without aborting their execution upon fail-stop failures. Instead, failed processes are re-spawned, and the application state is recovered through a global rollback. Moreover, we have optimized this resilience proposal by implementing a local rollback protocol, in which only failed processes rollback to a previous state, while message logging enables global consistency and further progress of the computation. Finally, we have extended a checkpointing library to facilitate the implementation of ad hoc recovery strategies in the event of soft errors) caused by memory corruptions. Many times, these errors can be handled at the software-Ievel, tIms, avoiding fail-stop failures and enabling a more efficient recovery

    Routing on the Channel Dependency Graph:: A New Approach to Deadlock-Free, Destination-Based, High-Performance Routing for Lossless Interconnection Networks

    Get PDF
    In the pursuit for ever-increasing compute power, and with Moore's law slowly coming to an end, high-performance computing started to scale-out to larger systems. Alongside the increasing system size, the interconnection network is growing to accommodate and connect tens of thousands of compute nodes. These networks have a large influence on total cost, application performance, energy consumption, and overall system efficiency of the supercomputer. Unfortunately, state-of-the-art routing algorithms, which define the packet paths through the network, do not utilize this important resource efficiently. Topology-aware routing algorithms become increasingly inapplicable, due to irregular topologies, which either are irregular by design, or most often a result of hardware failures. Exchanging faulty network components potentially requires whole system downtime further increasing the cost of the failure. This management approach becomes more and more impractical due to the scale of today's networks and the accompanying steady decrease of the mean time between failures. Alternative methods of operating and maintaining these high-performance interconnects, both in terms of hardware- and software-management, are necessary to mitigate negative effects experienced by scientific applications executed on the supercomputer. However, existing topology-agnostic routing algorithms either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. Using the fail-in-place strategy, a well-established method for storage systems to repair only critical component failures, is a feasible solution for current and future HPC interconnects as well as other large-scale installations such as data center networks. Although, an appropriate combination of topology and routing algorithm is required to minimize the throughput degradation for the entire system. This thesis contributes a network simulation toolchain to facilitate the process of finding a suitable combination, either during system design or while it is in operation. On top of this foundation, a key contribution is a novel scheduling-aware routing, which reduces fault-induced throughput degradation while improving overall network utilization. The scheduling-aware routing performs frequent property preserving routing updates to optimize the path balancing for simultaneously running batch jobs. The increased deployment of lossless interconnection networks, in conjunction with fail-in-place modes of operation and topology-agnostic, scheduling-aware routing algorithms, necessitates new solutions to solve the routing-deadlock problem. Therefore, this thesis further advances the state-of-the-art by introducing a novel concept of routing on the channel dependency graph, which allows the design of an universally applicable destination-based routing capable of optimizing the path balancing without exceeding a given number of virtual channels, which are a common hardware limitation. This disruptive innovation enables implicit deadlock-avoidance during path calculation, instead of solving both problems separately as all previous solutions

    PCODE: an efficient and reliable collective communication protocol for unreliable broadcast domain

    Get PDF
    Existing programming environments for clusters are typically built on top of a point-to-point communication layer (send and receive) over local area networks (LANs) and, as a result, suffer from poor performance in the collective communication part. For example, a broadcast that is implemented using a TCP/IP protocol (which is a point-to-point protocol) over a LAN is obviously inefficient as it is not utilizing the fact that the LAN is a broadcast medium. We have observed that the main difference between a distributed computing paradigm and a message passing parallel computing paradigm is that, in a distributed environment the activity of every processor is independent while in a parallel environment the collection of the user-communication layers in the processors can be modeled as a single global program. We have formalized the requirements by defining the notion of a correct global program. This notion provides a precise specification of the interface between the transport layer and the user-communication layer. We have developed PCODE, a new communication protocol that is driven by a global program and proved its correctness. We have implemented the PCODE protocol on a collection of IBM RS/6000 workstations and on a collection of Silicon Graphics Indigo workstations, both communicating via UDP broadcast. The experimental results we obtained indicate that the performance advantage of PCODE over the current point-to-point approach (TCP) can be as high as an order of magnitude on a cluster of 16 workstations
    corecore