101 research outputs found

    A Generalization of the {\L}o\'s-Tarski Preservation Theorem over Classes of Finite Structures

    Full text link
    We investigate a generalization of the {\L}o\'s-Tarski preservation theorem via the semantic notion of \emph{preservation under substructures modulo kk-sized cores}. It was shown earlier that over arbitrary structures, this semantic notion for first-order logic corresponds to definability by ∃k∀∗\exists^k\forall^* sentences. In this paper, we identify two properties of classes of finite structures that ensure the above correspondence. The first is based on well-quasi-ordering under the embedding relation. The second is a logic-based combinatorial property that strictly generalizes the first. We show that starting with classes satisfying any of these properties, the classes obtained by applying operations like disjoint union, cartesian and tensor products, or by forming words and trees over the classes, inherit the same property. As a fallout, we obtain interesting classes of structures over which an effective version of the {\L}o\'s-Tarski theorem holds.Comment: 28 pages, 1 figur

    On First-Order Definable Colorings

    Full text link
    We address the problem of characterizing HH-coloring problems that are first-order definable on a fixed class of relational structures. In this context, we give several characterizations of a homomorphism dualities arising in a class of structure

    A complexity dichotomy for poset constraint satisfaction

    Get PDF
    In this paper we determine the complexity of a broad class of problems that extends the temporal constraint satisfaction problems. To be more precise we study the problems Poset-SAT(Φ\Phi), where Φ\Phi is a given set of quantifier-free ≤\leq-formulas. An instance of Poset-SAT(Φ\Phi) consists of finitely many variables x1,…,xnx_1,\ldots,x_n and formulas ϕi(xi1,…,xik)\phi_i(x_{i_1},\ldots,x_{i_k}) with ϕi∈Φ\phi_i \in \Phi; the question is whether this input is satisfied by any partial order on x1,…,xnx_1,\ldots,x_n or not. We show that every such problem is NP-complete or can be solved in polynomial time, depending on Φ\Phi. All Poset-SAT problems can be formalized as constraint satisfaction problems on reducts of the random partial order. We use model-theoretic concepts and techniques from universal algebra to study these reducts. In the course of this analysis we establish a dichotomy that we believe is of independent interest in universal algebra and model theory.Comment: 29 page

    Constraint satisfaction problems for reducts of homogeneous graphs

    Get PDF
    For n >= 3, let (Hn, E) denote the n-th Henson graph, i.e., the unique countable homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the complete graph on n vertices. We show that for all structures Gamma with domain Hn whose relations are first-order definable in (Hn, E) the constraint satisfaction problem for Gamma is either in P or is NP-complete. We moreover show a similar complexity dichotomy for all structures whose relations are first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation. Together with earlier results, in particular for the random graph, this completes the complexity classification of constraint satisfaction problems of structures first-order definable in countably infinite homogeneous graphs: all such problems are either in P or NP-complete
    • …
    corecore