1,608 research outputs found

    An Integrated Building Fire Evacuation System with RFID and Cloud Computing

    Get PDF
    [[abstract]]Building fire is a common disaster happening in our daily life that causes unfortunate casualties and deaths. Successfully escaping from fire depends on the design of evacuation route and time, as most of the damage of fire is caused due to lack of evacuation equipments or poor design of the emergency route. In this research work, we designed a hybrid building fire evacuation system (HBFES) on a mobile phone using Radio Frequency Identification (RFID) techniques and Cloud Computing. The system will be implemented at Tamkang University on Lanyang campus. Several existing computer or mobile phone applications, namely Viewpoint Calculator, Path planner, and MobiX3D viewer will be used on the system to rapidly calculate reliable evacuation routes when building fire takes place.[[notice]]補正完畢[[conferencetype]]國際[[conferencedate]]20111014~10111016[[ispeerreviewed]]Y[[booktype]]紙本 電子版[[iscallforpapers]]Y[[conferencelocation]]Dalian, China[[countrycodes]]CH

    A Real-time Decision Support with Cloud Computing Based Fire Evacuation System

    Get PDF
    [[abstract]]An effective evacuation system can help people escape from building fire. Most evacuation systems consist of a indoor positioning system, a back-end database, and a display device with calculation and display software. However, very few of them can smartly determine which evacuation route is the best decision. If all the locations of the evacuating people can be simultaneously determined, the best evacuation routes can be decided to avoid congestion, and survival rate can increase. The previous radio frequency identification (RFID) based evacuation system focused on detecting the RFID tags using a mobile phone in order to determine the location of the mobile phone user so that an evacuation route can be displayed. However, the system is available for one person regardless of the number of evacuating people or exits. This study is based on the previous RFID based evacuation system investigating the best evacuation routes. The system introduces cloud computing that calculates for positioning the evacuating people and determining the optimum evacuation routes for each of them. The system will be implemented at Tamkang University on Lanyang campus.[[notice]]補正完畢[[conferencetype]]國際[[conferencedate]]20111024~20111026[[booktype]]紙本;電子版[[iscallforpapers]]Y[[conferencelocation]]Macao[[countrycodes]]MA

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Intelligent evacuation management systems: A review

    Get PDF
    Crowd and evacuation management have been active areas of research and study in the recent past. Various developments continue to take place in the process of efficient evacuation of crowds in mass gatherings. This article is intended to provide a review of intelligent evacuation management systems covering the aspects of crowd monitoring, crowd disaster prediction, evacuation modelling, and evacuation path guidelines. Soft computing approaches play a vital role in the design and deployment of intelligent evacuation applications pertaining to crowd control management. While the review deals with video and nonvideo based aspects of crowd monitoring and crowd disaster prediction, evacuation techniques are reviewed via the theme of soft computing, along with a brief review on the evacuation navigation path. We believe that this review will assist researchers in developing reliable automated evacuation systems that will help in ensuring the safety of the evacuees especially during emergency evacuation scenarios

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Spatial representation of public displays networks

    Get PDF
    Dissertação de mestrado integrado em Engenharia de ComunicaçõesEste trabalho faz parte do projeto Europeu Pd-Net e tem como objectivo identificar e abordar os desafios tecnológicos e de investigação relacionados com a criação de redes, em larga escala, de ecrãs públicos e sensores associados. O aparecimento das redes de larga escala de ecrãs públicos irá representar uma mudança significativa no modo como pensamos sobre a disseminação de informação em espaços públicos e criará uma nova área de investigação, as bases para um novo meio de comunicação e novas oportunidades de negócio. De igual modo, é esperada uma mudança nos espaços públicos para espaços inteligentes que podem ser ajustados para refletir as esperanças, aspirações e interesses dos ocupantes que utilizam o conteúdo e as aplicações criadas em qualquer parte da rede. Um dos pontos-chave da rede de ecrãs públicos é a possibilidade de endereçar a rede como um todo e focar nas relações espaciais entre os ecrãs.This work is part of Pd-Net, a European project that aims to explore the scientific challenges and new technologies required to enable the emergence of large scale networks of pervasive public displays and associated sensors that are open to applications and content from many sources. The emergence of such pervasive display networks would represent a radical transformation in the way we think about information dissemination in public spaces and will create a new research area, provide the foundations for a new communication medium and new business opportunities. In the same way, it is expected a change from public spaces – from today’s environments in which information is pushed to passers-by in the form of adverts – to spaces that can utilise ambient intelligence to be tailored to reflect the hopes, aspirations and interests of its occupants using content and applications created anywhere in a global network. One of the interesting features of pervasive displays networks is the possibility to address the network as a whole and to focus on the spatial relations between displays

    Application of Virtual Reality in the study of Human Behavior in Fire : Pursuing realistic behavior in evacuation experiments

    Get PDF
    Virtual Reality (VR) experiments are used to study human behavior in fire because they allow simulation of fire events with relatively low risks to the participants, while maintaining high levels of experimental control. Manystudies have used VR experiments to explore aspects of the human response to fire threats, but VR experiments as a research method are yet to be subjected to a systematic process of validation. One way to validate VR experiments is to compare VR data to data obtained using other research methods, e.g., case studies, laboratory experiments, and field experiments. Five independent VR experiments were designed to collect data that could be then compared to data collected using other research methods. Both datasets, VR and physical, are thencompared with each other to assess similarities and differences between them. Results show that participants in the VR experiments often acted like people did in the physical-world events. Moreover, Human Behavior in Fire theories that explain the behavior of victims in real fires were found to also explain the participants’ behavior in the VR experiments. There were differences between VR and physical-world samples, which highlighted limitations of VR experiments or aspects about realism that need to be considered when designing VR experiments. Visual realism is not enough for participants to interpret a virtual fire emergency as a threat. Therefore, VR experiments need to induce participants to take the virtual fire event seriously. Social norms that apply in physical world contexts may not emerge naturally in virtual environments, and measures should be taken to enhance behavioral realism in VR. These findings are a meaningful contribution to the development of the VR experiment method for collection of behavioral data

    Applications of 5G Communications in Civil Protection

    Get PDF
    Τα δίκτυα πέμπτης γενιάς θεωρούνται ευρέως ως μία από τις πιο θεμελιώδεις τεχνολογικές εξελίξεις του τρέχοντος αιώνα, προσφέροντας υψηλή ταχύτητα, χαμηλή καθυστέρηση και κλιμάκωση. Τα επόμενα χρόνια, τα δίκτυα πέμπτης γενιάς αναμένεται να δημιουργήσουν τη χωρητικότητα, την απόδοση και την ευελιξία του ασύρματου δικτύου για να υποστηρίξουν μια εκρηκτική αύξηση στις συνδεδεμένες συσκευές, μαζί με πρωτοποριακές εφαρμογές. Αυτή η καινοτόμος νέα τεχνολογία μπορεί να βελτιώσει όλο το φάσμα της καθημερινής ζωής από την υγεία στην ψυχαγωγία και από τη γεωργία στην πολιτική προστασία. Οι κρίσιμες επικοινωνίες, ο ακρογωνιαίος λίθος της Πολιτικής Προστασίας, θα επωφεληθούν σε μεγάλο βαθμό από το 5G. Η παρούσα εργασία μελετά πώς νέα στοιχεία και τεχνολογίες του 5G όπως η επαυξημένη πραγματικότητα, η ηλεκτρονική υγεία και η βελτιστοποιημένη δρομολόγηση ασθενοφόρων μπορούν να υποστηρίξουν την Πολιτική Προστασία ενισχύοντας παράλληλα το περιβάλλον και την οικονομία.5G networks are widely considered as one of the most fundamental technology developments of our century, providing ultra-high-speed, low-latency and scalability. Over the coming years, 5G is expected to create the wireless network capacity, performance and flexibility to support an explosive increase in connected devices, along with exciting new use cases. This innovative technology can improve the whole spectrum of everyday life from health to entertainment and from agriculture to civil protection. Mission critical Communications, the cornerstone of civil protection, are to be greatly impacted by 5G. This thesis studies how new 5G components and technologies such as augmented reality, ehealth and optimized routing of ambulances are able to support the role of civil protection while enhancing the protection of the environment and the economy

    Simulation-Based Countermeasures Towards Accident Prevention : Virtual Reality Utilization in Industrial Processes and Activities

    Get PDF
    Despite growing industrial interests in fully immersive virtual reality (VR) applications for safety countermeasures, there is scanty research on the subject in the context of accident prevention during manufacturing processes and plant maintenance activities. This dissertation aims to explore and experiment with VR for accident prevention by targeting three workplace safety countermeasures: fire evacuation drills, hazard identification and risk assessments (HIRA), and emergency preparedness and response (EPR) procedures. Drawing on the virtual reality accident causation model (VR-ACM) (i.e., 3D modelling and simulation, accident causation, and safety drills) and the fire evacuation training model, two industrial 3D simulation models were utilized for the immersive assessment and training. These were a lithium-ion battery (LIB) manufacturing factory and a gas power plant (GPP). In total, five studies (publications) were designed to demonstrate the potential of VR in accident prevention during the manufacturing processes and maintenance activities at the facility conceptual stages. Two studies were with the LIB factory simulation to identify inherent hazards and assess risks for redesigning the factory to ensure workplace safety compliance. The other three studies constituted fire hazard identifications, emergency evacuations and hazard control/mitigations during the maintenance activity in the GPP simulation. Both study models incorporated several participants individually immersed in the virtual realm to experience the accident phenomena intuitively. These participants provided feedback for assessing the research objectives. Results of the studies indicated that several inherent hazards in the LIB factory were identified and controlled/mitigated. Secondly, the GPP experiment results suggested that although the maintenance activity in the virtual realm increased the perception of presence, a statistically significant delay was recorded at the pre-movement stage due to the lack of situational safety awareness. Overall, the study demonstrates that participants immersed in a VR plant maintenance activity and manufacturing factory process simulation environments can experience real-time emergency scenarios and conditions necessary for implementing the essential safety countermeasures to prevent accidents.Vaikka kiinnostus virtuaalitodellisuuden (VR) käyttöön turvallisuuden varotoimissa teollisuudessa on kasvanut, tutkimuksia ei ole juurikaan tehty onnettomuuksien ehkäisystä valmistus- ja kunnossapitotoiminnassa. Tämän väitöskirjan tavoitteena on tutkia ja kokeilla VR:ää tapaturmien ehkäisyssä kohdistuen kolmeen työpaikan turvallisuuden varotoimeen: paloharjoitukset, riskien arvioinnit sekä hätätilanteiden valmiusmenettelyt ja toimintasuunnitelmat (EPR). Kokemuksellisessa ja uppouttavassa koulutuksessa hyödynnettiin kahta teollisuuden 3D-simulointimallia, jotka nojautuvat virtuaalitodellisuuden onnettomuuksien aiheutumismalliin (VR-ACM) (eli 3D-mallinnus- ja simulointi, onnettomuussyy- ja turvallisuuskoulutus) sekä paloharjoitusmalliin. Nämä 3D-simulointimallit ovat litiuminoniakkuja (LIB) valmistava tehdas, joka rakennettiin Visual Components 3D-simulointiohjelmistolla (versio 4.0) ja kaasuvoimala (GPP) Unrealin reaaliaikaisella pelimoottorilla (versio 4.2). Yhteensä viisi tutkimusta (julkaisua) suunniteltiin havainnollistamaan VR:n potentiaalia tapaturmien ehkäisyssä valmistusprosessin layout-suunnittelun ja tehtaan konseptivaiheissa tehtävän kunnossapidon aikana. Kaksi tutkimusta tehtiin LIB-tehdassimulaatiolla vaarojen tunnistamiseksi sekä riskien arvioimiseksi. Tutkimukset tehtiin tehtaan uudelleensuunnittelua varten, työturvallisuuden noudattamisen varmistamiseksi. Muut kolme tutkimusta käsittelevät palovaaran tunnistamista, hätäevakuointia ja riskien vähentämistä huoltotoiminnan aikana GPP-simulaatiossa. Molemmissa tutkimusmalleissa oli useita virtuaalimaailmaan uppoutuneita osallistujia, jotka saivat kokea onnettomuudet yksilöllisesti ja intuitiivisesti. Osallistujat antoivat palautetta kokeen jälkeisessä kyselyssä. Kyselyn tuloksien avulla LIB-tehtaassa tunnistettiin ja lievennettiin useita vaaroja. GPP-kokeilun tulokset viittasivat siihen, että vaikka ylläpitotoiminta virtuaalimaailmassa lisäsi teleläsnäoloa, tilastollisesti merkittävä viive kirjattiin liikettä edeltävässä vaiheessa turvallisuustietoisuuden puuteen vuoksi. Kaiken kaikkiaan tutkimus osoittaa, että VR-laitoksen kunnossapitotoimintaan ja tuotantotehtaan prosessisimulaatioympäristöihin uppoutuvat osallistujat voivat kokea reaaliaikaisia hätäskenaarioita ja olosuhteita, jotka ovat välttämättömiä olennaisten turvallisuustoimien toteuttamiseksi.fi=vertaisarvioitu|en=peerReviewed
    corecore