636 research outputs found

    Prerequisites for Affective Signal Processing (ASP) - Part V: A response to comments and suggestions

    Get PDF
    In four papers, a set of eleven prerequisites for affective signal processing (ASP) were identified (van den Broek et al., 2010): validation, triangulation, a physiology-driven approach, contributions of the signal processing community, identification of users, theoretical specification, integration of biosignals, physical characteristics, historical perspective, temporal construction, and real-world baselines. Additionally, a review (in two parts) of affective computing was provided. Initiated by the reactions on these four papers, we now present: i) an extension of the review, ii) a post-hoc analysis based on the eleven prerequisites of Picard et al.(2001), and iii) a more detailed discussion and illustrations of temporal aspects with ASP

    Thesis Review Affective Signal Processing (ASP): Unraveling the mystery of emotions, by Egon L. van den Broek

    Get PDF
    Abstract. The present work is a review of the PhD thesis defended by Egon L. van den Broek on September 16, 2011 at the department of Human Media Interaction, Faculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, Enschede, The Netherlands. I was a member of the PhD dissertation Committee. I was overwhelmed by the quality and the amount of work he did. The thesis is a great contribution to our understanding and harnessing the principles underlying affective multimodal communication and to the development of future real-world technologies for affective signal processing

    Tune in to your emotions: a robust personalized affective music player

    Get PDF
    The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listeners’ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application

    Music directs your mood

    Get PDF

    Connecting people through physiosocial technology

    Get PDF
    Social connectedness is one of the most important predictors of health and well-being. The goal of this dissertation is to investigate technologies that can support social connectedness. Such technologies can build upon the notion that disclosing emotional information has a strong positive influence on social connectedness. As physiological signals are strongly related to emotions, they might provide a solid base for emotion communication technologies. Moreover, physiological signals are largely lacking in unmediated communication, have been used successfully by machines to recognize emotions, and can be measured relatively unobtrusively with wearable sensors. Therefore, this doctoral dissertation examines the following research question: How can we use physiological signals in affective technology to improve social connectedness? First, a series of experiments was conducted to investigate if computer interpretations of physiological signals can be used to automatically communicate emotions and improve social connectedness (Chapters 2 and 3). The results of these experiments showed that computers can be more accurate at recognizing emotions than humans are. Physiological signals turned out to be the most effective information source for machine emotion recognition. One advantage of machine based emotion recognition for communication technology may be the increase in the rate at which emotions can be communicated. As expected, experiments showed that increases in the number of communicated emotions increased feelings of closeness between interacting people. Nonetheless, these effects on feelings of closeness are limited if users attribute the cause of the increases in communicated emotions to the technology and not to their interaction partner. Therefore, I discuss several possibilities to incorporate emotion recognition technologies in applications in such a way that users attribute the communication to their interaction partner. Instead of using machines to interpret physiological signals, the signals can also be represented to a user directly. This way, the interpretation of the signal is left to be done by the user. To explore this, I conducted several studies that employed heartbeat representations as a direct physiological communication signal. These studies showed that people can interpret such signals in terms of emotions (Chapter 4) and that perceiving someone's heartbeat increases feelings of closeness between the perceiver and sender of the signal (Chapter 5). Finally, we used a field study (Chapter 6) to investigate the potential of heartbeat communication mechanisms in practice. This again confirmed that heartbeat can provide an intimate connection to another person, showing the potential for communicating physiological signals directly to improve connectedness. The last part of the dissertation builds upon the notion that empathy has positive influences on social connectedness. Therefore, I developed a framework for empathic computing that employed automated empathy measurement based on physiological signals (Chapter 7). This framework was applied in a system that can train empathy (Chapter 8). The results showed that providing users frequent feedback about their physiological synchronization with others can help them to improve empathy as measured through self-report and physiological synchronization. In turn, this improves understanding of the other and helps people to signal validation and caring, which are types of communication that improve social connectedness. Taking the results presented in this dissertation together, I argue that physiological signals form a promising modality to apply in communication technology (Chapter 9). This dissertation provides a basis for future communication applications that aim to improve social connectedness

    On the Recognition of Emotion from Physiological Data

    Get PDF
    This work encompasses several objectives, but is primarily concerned with an experiment where 33 participants were shown 32 slides in order to create ‗weakly induced emotions‘. Recordings of the participants‘ physiological state were taken as well as a self report of their emotional state. We then used an assortment of classifiers to predict emotional state from the recorded physiological signals, a process known as Physiological Pattern Recognition (PPR). We investigated techniques for recording, processing and extracting features from six different physiological signals: Electrocardiogram (ECG), Blood Volume Pulse (BVP), Galvanic Skin Response (GSR), Electromyography (EMG), for the corrugator muscle, skin temperature for the finger and respiratory rate. Improvements to the state of PPR emotion detection were made by allowing for 9 different weakly induced emotional states to be detected at nearly 65% accuracy. This is an improvement in the number of states readily detectable. The work presents many investigations into numerical feature extraction from physiological signals and has a chapter dedicated to collating and trialing facial electromyography techniques. There is also a hardware device we created to collect participant self reported emotional states which showed several improvements to experimental procedure

    The role of representation in Bayesian reasoning: Correcting common misconceptions

    Get PDF
    The terms nested sets, partitive frequencies, inside-outside view, and dual processes add little but confusion to our original analysis (Gigerenzer & Hoffrage 1995; 1999). The idea of nested set was introduced because of an oversight; it simply rephrases two of our equations. Representation in terms of chances, in contrast, is a novel contribution yet consistent with our computational analysis - it uses exactly the same numbers as natural frequencies. We show that non-Bayesian reasoning in children, laypeople, and physicians follows multiple rules rather than a general-purpose associative process in a vaguely specified "System 1.” It is unclear what the theory in "dual process theory” is: Unless the two processes are defined, this distinction can account post hoc for almost everything. In contrast, an ecological view of cognition helps to explain how insight is elicited from the outside (the external representation of information) and, more generally, how cognitive strategies match with environmental structure

    Music directs your mood

    Get PDF

    Un outil d’évaluation neurocognitive des interactions humain-machine

    Full text link
    De plus en plus de recherches sur les Interactions Humain-Machine (IHM) tentent d’effectuer des analyses fines de l’interaction afin de faire ressortir ce qui influence les comportements des utilisateurs. Tant au niveau de l’évaluation de la performance que de l’expérience des utilisateurs, on note qu’une attention particulière est maintenant portée aux réactions émotionnelles et cognitives lors de l’interaction. Les approches qualitatives standards sont limitées, car elles se fondent sur l’observation et des entrevues après l’interaction, limitant ainsi la précision du diagnostic. L’expérience utilisateur et les réactions émotionnelles étant de nature hautement dynamique et contextualisée, les approches d’évaluation doivent l’être de même afin de permettre un diagnostic précis de l’interaction. Cette thèse présente une approche d’évaluation quantitative et dynamique qui permet de contextualiser les réactions des utilisateurs afin d’en identifier les antécédents dans l’interaction avec un système. Pour ce faire, ce travail s’articule autour de trois axes. 1) La reconnaissance automatique des buts et de la structure de tâches de l’utilisateur, à l’aide de mesures oculométriques et d’activité dans l’environnement par apprentissage machine. 2) L’inférence de construits psychologiques (activation, valence émotionnelle et charge cognitive) via l’analyse des signaux physiologiques. 3) Le diagnostic de l‘interaction reposant sur le couplage dynamique des deux précédentes opérations. Les idées et le développement de notre approche sont illustrés par leur application dans deux contextes expérimentaux : le commerce électronique et l’apprentissage par simulation. Nous présentons aussi l’outil informatique complet qui a été implémenté afin de permettre à des professionnels en évaluation (ex. : ergonomes, concepteurs de jeux, formateurs) d’utiliser l’approche proposée pour l’évaluation d’IHM. Celui-ci est conçu de manière à faciliter la triangulation des appareils de mesure impliqués dans ce travail et à s’intégrer aux méthodes classiques d’évaluation de l’interaction (ex. : questionnaires et codage des observations).More and more researches on Human-Computer Interactions (HCI) are trying to perform detailed analyses of interaction to determine its influence on users’ behaviours. A particular emphasis is now put on emotional reactions during the interaction, whether it’s from the perspective of user experience evaluation or user performance. Standard qualitative approaches are limited because they are based on observations and interviews after the interaction, therefore limiting the precision of the diagnosis. User experience and emotional reactions being, by nature, highly dynamic and contextualized, evaluation approaches should be the same to accurately diagnose the quality of interaction. This thesis presents an evaluation approach, both dynamic and quantitative, which allows contextualising users’ emotional reactions to help identify their causes during the interaction with a system. To this end, our work focuses on three main axes: 1) automatic task recognition using machine learning modeling of eye tracking and interaction data; 2) automatic inference of psychological constructs (emotional activation, emotional valence, and cognitive load) through physiological signals analysis; and 3) diagnosis of users’ reactions during interaction based on the coupling of the two previous operations. The ideas and development of our approach are illustrated using two experimental contexts: e-commerce and simulation-based training. We also present the tool we implemented in order to allow HCI professionals (e.g.: user experience expert, training supervisor, or game designer) to use our evaluation approach to assess interaction. This tool is designed to facilitate the triangulation of measuring instruments and the integration with more classical Human-Computer Interaction methods (ex.: surveys and observation coding)
    corecore