220 research outputs found

    TFN: An Interpretable Neural Network with Time-Frequency Transform Embedded for Intelligent Fault Diagnosis

    Full text link
    Convolutional Neural Networks (CNNs) are widely used in fault diagnosis of mechanical systems due to their powerful feature extraction and classification capabilities. However, the CNN is a typical black-box model, and the mechanism of CNN's decision-making are not clear, which limits its application in high-reliability-required fault diagnosis scenarios. To tackle this issue, we propose a novel interpretable neural network termed as Time-Frequency Network (TFN), where the physically meaningful time-frequency transform (TFT) method is embedded into the traditional convolutional layer as an adaptive preprocessing layer. This preprocessing layer named as time-frequency convolutional (TFconv) layer, is constrained by a well-designed kernel function to extract fault-related time-frequency information. It not only improves the diagnostic performance but also reveals the logical foundation of the CNN prediction in the frequency domain. Different TFT methods correspond to different kernel functions of the TFconv layer. In this study, four typical TFT methods are considered to formulate the TFNs and their effectiveness and interpretability are proved through three mechanical fault diagnosis experiments. Experimental results also show that the proposed TFconv layer can be easily generalized to other CNNs with different depths. The code of TFN is available on https://github.com/ChenQian0618/TFN.Comment: 20 pages, 15 figures, 5 table

    Predictive Maintenance of an External Gear Pump using Machine Learning Algorithms

    Get PDF
    The importance of Predictive Maintenance is critical for engineering industries, such as manufacturing, aerospace and energy. Unexpected failures cause unpredictable downtime, which can be disruptive and high costs due to reduced productivity. This forces industries to ensure the reliability of their equip-ment. In order to increase the reliability of equipment, maintenance actions, such as repairs, replacements, equipment updates, and corrective actions are employed. These actions affect the flexibility, quality of operation and manu-facturing time. It is therefore essential to plan maintenance before failure occurs.Traditional maintenance techniques rely on checks conducted routinely based on running hours of the machine. The drawback of this approach is that maintenance is sometimes performed before it is required. Therefore, conducting maintenance based on the actual condition of the equipment is the optimal solu-tion. This requires collecting real-time data on the condition of the equipment, using sensors (to detect events and send information to computer processor).Predictive Maintenance uses these types of techniques or analytics to inform about the current, and future state of the equipment. In the last decade, with the introduction of the Internet of Things (IoT), Machine Learning (ML), cloud computing and Big Data Analytics, manufacturing industry has moved forward towards implementing Predictive Maintenance, resulting in increased uptime and quality control, optimisation of maintenance routes, improved worker safety and greater productivity.The present thesis describes a novel computational strategy of Predictive Maintenance (fault diagnosis and fault prognosis) with ML and Deep Learning applications for an FG304 series external gear pump, also known as a domino pump. In the absence of a comprehensive set of experimental data, synthetic data generation techniques are implemented for Predictive Maintenance by perturbing the frequency content of time series generated using High-Fidelity computational techniques. In addition, various types of feature extraction methods considered to extract most discriminatory informations from the data. For fault diagnosis, three types of ML classification algorithms are employed, namely Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Naive Bayes (NB) algorithms. For prognosis, ML regression algorithms, such as MLP and SVM, are utilised. Although significant work has been reported by previous authors, it remains difficult to optimise the choice of hyper-parameters (important parameters whose value is used to control the learning process) for each specific ML algorithm. For instance, the type of SVM kernel function or the selection of the MLP activation function and the optimum number of hidden layers (and neurons).It is widely understood that the reliability of ML algorithms is strongly depen-dent upon the existence of a sufficiently large quantity of high-quality training data. In the present thesis, due to the unavailability of experimental data, a novel high-fidelity in-silico dataset is generated via a Computational Fluid Dynamic (CFD) model, which has been used for the training of the underlying ML metamodel. In addition, a large number of scenarios are recreated, ranging from healthy to faulty ones (e.g. clogging, radial gap variations, axial gap variations, viscosity variations, speed variations). Furthermore, the high-fidelity dataset is re-enacted by using degradation functions to predict the remaining useful life (fault prognosis) of an external gear pump.The thesis explores and compares the performance of MLP, SVM and NB algo-rithms for fault diagnosis and MLP and SVM for fault prognosis. In order to enable fast training and reliable testing of the MLP algorithm, some predefined network architectures, like 2n neurons per hidden layer, are used to speed up the identification of the precise number of neurons (shown to be useful when the sample data set is sufficiently large). Finally, a series of benchmark tests are presented, enabling to conclude that for fault diagnosis, the use of wavelet features and a MLP algorithm can provide the best accuracy, and the MLP al-gorithm provides the best prediction results for fault prognosis. In addition, benchmark examples are simulated to demonstrate the mesh convergence for the CFD model whereas, quantification analysis and noise influence on training data are performed for ML algorithms

    Fault Diagnosis of Transfer Learning Equipment Based on Cloud Edge Collaboration + Confrontation Network

    Get PDF
    With the continuous improvement of product quality, production efficiency, and complexity, higher requirements are put forward for the reliability and stability of equipment, and the difficulty of real-time diagnosis of faults and functional failures is also increasing. The traditional fault diagnosis methods based on signal processing and Convolutional neural network cannot meet the requirements of on-site online real-time fault diagnosis of equipment. One is that the vibration signals on the industrial site are superimposed on each other, nonlinear and unstable and traditional feature extraction methods take a long time, resulting in unstable extraction results. Second, massive data and fault diagnosis algorithms need rich computing and storage resources. The traditional Convolutional neural network method conflicts with the real-time response requirements of fault diagnosis. At the same time, different models of fault diagnosis models have poor generalization ability, and the diagnostic accuracy is not high or even impossible to diagnose. To solve the above problems, this paper proposes a fault diagnosis method based on industrial Internet platform, which is equipment cloud edge collaboration + adaptive countermeasure network Transfer learning. On the edge side, the vibration signals collected from key components of the model are processed using empirical mode decomposition (EEMD) to solve the problem of signal nonlinearity and stationarity. In the cloud, EEMD signals of different models are decomposed into source domain and target domain for confrontation training, which is used as the input of the improved domain adversarial network model DANN (Domain Adversarial Neural Networks), so as to improve the accuracy of fault diagnosis of different models by using cloud computing power and the improved adversarial network Transfer learning algorithm. Through the analysis of experimental data, this paper verifies that the model after the confrontation network Transfer learning is more accurate than the traditional fault diagnosis method. Through the coordination of computing resources and real-time requirements, real-time diagnosis of cloud side collaborative bearing fault is realized

    Deep transfer learning for machine diagnosis: From sound and music recognition to bearing fault detection

    Get PDF
    Today’s deep learning strategies require ever‐increasing computational efforts and demand for very large amounts of labelled data. Providing such expensive resources for machine diagnosis is highly challenging. Transfer learning recently emerged as a valuable approach to address these issues. Thus, the knowledge learned by deep architectures in different scenarios can be reused for the purpose of machine diagnosis, minimizing data collecting efforts. Existing research provides evidence that networks pre‐trained for image recognition can classify machine vibrations in the time‐frequency domain by means of transfer learning. So far, however, there has been little discussion about the potentials included in networks pre‐trained for sound recognition, which are inherently suited for time‐frequency tasks. This work argues that deep architectures trained for music recognition and sound detection can perform machine diagnosis. The YAMNet convolutional network was designed to serve extremely efficient mobile applications for sound detection, and it was originally trained on millions of data extracted from YouTube clips. That framework is employed to detect bearing faults for the CWRU dataset. It is shown that transferring knowledge from sound and music recognition to bearing fault detection is successful. The maximum accuracy is achieved using a few hundred data for fine‐tuning the fault diagnosis model

    Condition Monitoring Methods for Large, Low-speed Bearings

    Get PDF
    In all industrial production plants, well-functioning machines and systems are required for sustained and safe operation. However, asset performance degrades over time and may lead to reduced effiency, poor product quality, secondary damage to other assets or even complete failure and unplanned downtime of critical systems. Besides the potential safety hazards from machine failure, the economic consequences are large, particularly in offshore applications where repairs are difficult. This thesis focuses on large, low-speed rolling element bearings, concretized by the main swivel bearing of an offshore drilling machine. Surveys have shown that bearing failure in drilling machines is a major cause of rig downtime. Bearings have a finite lifetime, which can be estimated using formulas supplied by the bearing manufacturer. Premature failure may still occur as a result of irregularities in operating conditions and use, lubrication, mounting, contamination, or external environmental factors. On the contrary, a bearing may also exceed the expected lifetime. Compared to smaller bearings, historical failure data from large, low-speed machinery is rare. Due to the high cost of maintenance and repairs, the preferred maintenance arrangement is often condition based. Vibration measurements with accelerometers is the most common data acquisition technique. However, vibration based condition monitoring of large, low-speed bearings is challenging, due to non-stationary operating conditions, low kinetic energy and increased distance from fault to transducer. On the sensor side, this project has also investigated the usage of acoustic emission sensors for condition monitoring purposes. Roller end damage is identified as a failure mode of interest in tapered axial bearings. Early stage abrasive wear has been observed on bearings in drilling machines. The failure mode is currently only detectable upon visual inspection and potentially through wear debris in the bearing lubricant. In this thesis, multiple machine learning algorithms are developed and applied to handle the challenges of fault detection in large, low-speed bearings with little or no historical data and unknown fault signatures. The feasibility of transfer learning is demonstrated, as an approach to speed up implementation of automated fault detection systems when historical failure data is available. Variational autoencoders are proposed as a method for unsupervised dimensionality reduction and feature extraction, being useful for obtaining a health indicator with a statistical anomaly detection threshold. Data is collected from numerous experiments throughout the project. Most notably, a test was performed on a real offshore drilling machine with roller end wear in the bearing. To replicate this failure mode and aid development of condition monitoring methods, an axial bearing test rig has been designed and built as a part of the project. An overview of all experiments, methods and results are given in the thesis, with details covered in the appended papers.publishedVersio

    Bearing fault diagnosis using multidomain fusion-based vibration imaging and multitask learning.

    Get PDF
    Statistical features extraction from bearing fault signals requires a substantial level of knowledge and domain expertise. Furthermore, existing feature extraction techniques are mostly confined to selective feature extraction methods namely, time-domain, frequency-domain, or time-frequency domain statistical parameters. Vibration signals of bearing fault are highly non-linear and non-stationary making it cumbersome to extract relevant information for existing methodologies. This process even became more complicated when the bearing operates at variable speeds and load conditions. To address these challenges, this study develops an autonomous diagnostic system that combines signal-to-image transformation techniques for multi-domain information with convolutional neural network (CNN)-aided multitask learning (MTL). To address variable operating conditions, a composite color image is created by fusing information from multi-domains, such as the raw time-domain signal, the spectrum of the time-domain signal, and the envelope spectrum of the time-frequency analysis. This 2-D composite image, named multi-domain fusion-based vibration imaging (MDFVI), is highly effective in generating a unique pattern even with variable speeds and loads. Following that, these MDFVI images are fed to the proposed MTL-based CNN architecture to identify faults in variable speed and health conditions concurrently. The proposed method is tested on two benchmark datasets from the bearing experiment. The experimental results suggested that the proposed method outperformed state-of-the-arts in both datasets
    corecore