1,778 research outputs found

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms

    Get PDF
    Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance

    Design, Evaluation, and Application of Heart Rate Variability Analysis Software (HRVAS)

    Get PDF
    The analysis of heart rate variability (HRV) has become an increasingly popular and important tool for studying many disease pathologies in the past twenty years. HRV analyses are methods used to non-invasively quantify variability within heart rate. Purposes of this study were to design, evaluate, and apply an easy to use and open-source HRV analysis software package (HRVAS). HRVAS implements four major categories of HRV techniques: statistical and time-domain analysis, frequency-domain analysis, nonlinear analysis, and time-frequency analysis. Software evaluations were accomplished by performing HRV analysis on simulated and public congestive heart failure (CHF) data. Application of HRVAS included studying the effects of hyperaldosteronism on HRV in rats. Simulation and CHF results demonstrated that HRVAS was a dependable HRV analysis tool. Results from the rat hyperaldosteronism model showed that 5 of 26 HRV measures were statistically significant (p\u3c0.05). HRVAS provides a useful tool for HRV analysis to researchers
    corecore