158 research outputs found

    성능-침강안정성 상충 문제 해결을 위한 복합체 기반 자기유변유체에 대한 연구

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 재료공학부, 2021. 2. 서용석.Magnetorheological (MR) fluids are smart materials composed of magnetic particles dispersed in magnetically-insulating carrier medium. With magnetic field, chain-like structures are formed due to dipole-induced magnetostatic interaction between magnetic particles, and the structures inhibit the flow and increase the viscosity of MR fluids in very short time. This characteristic enables the rheological properties of MR fluids to be easily tailored with magnetic field strength. Due to this unique response, MR fluids can be used for actuator systems like power steering pumps haptic devices, and active suspensions, and damper systems in automobile, bridges, buildings and so on. A huge obstacle for application of MR fluids is their poor long-term stability against the sedimentation of magnetic particles. The large difference in the density between heavy magnetic particles and light medium make magnetic particles quickly go down to bottom, reducing the MR fluids length of life. One of the strategies for improvement of the long-term stability was to reduce the density of magnetic particles by synthesizing magnetic composite materials. Fabrication of magnetic composites using light materials such as polymer, silica, carbon materials efficiently have reduced the density mismatch between magnetic materials and carrier medium, enhancing the long-term stability of MR fluids. However, there was trade-off between long-term stability and performance of MR fluids because use of light materials is equivalent to the deterioration in magnetic properties. In this study, various magnetic composites with different composition and structures were fabricated for the objective of producing MR fluids having excellent performance and long-term stability simultaneously. As a first step, hollow structured polymer-Fe3O4 composite particles were synthesized using SiO2 as sacrificial template. With cavity inside, the hollow magnetic composite particles showed the density only 40 % of bare Fe3O4 and the large improvement in long-term stability of MR suspensions could be observed. To avoid huge decline in MR performance with non-magnetic polymers, hierarchically-structured Fe3O4 nanoparticles were prepared with simple electrospraying process. By excluding polymers, hierarchically-structured Fe3O4 had magnetization value very closed to its primary nanoparticles, leading to MR performance higher more than 3 times of hollow structured polymer-Fe3O4 suspensions. At the same time, the pores inside reduced the density of the structured particles by 23 %, resulting in better long-term stability of hierarchically-structured Fe3O4 suspension than bare Fe3O4 suspension. To minimize the trade-off between MR performance and long-term stability (density of magnetic particles), non-spherical, CoFeNi-based magnetic composites were fabricated and applied for MR fluids. CNT-Co0.4Fe0.4Ni0.2 composite was produced by synthesizing Co0.4Fe0.4Ni0.2 on the surface of functionalized CNTs. Much higher magnetization of Co0.4Fe0.4Ni0.2 compared to Fe3O4 enabled CNT-Co0.4Fe0.4Ni0.2 suspension to have much superior MR performance than Fe3O4 composite-based MR fluids. Also, due to high aspect ratio of CNTs, outstanding long-term stability of 22 % light transmission was observed with formation of 3-dimensional network structures. Finally, magnetically non-active CNTs were replaced by magnetizable, flake-shaped sendust. The high drag coefficient of flake sendust, combined with roughened surface due to attached Co0.4Fe0.4Ni0.2 nanoparticles, resulted in excellent stability with 23 % of light transmission despite of the high density of sendust-Co0.4Fe0.4Ni0.2 composite particles. Also, because both constituents of sendust-Co0.4Fe0.4Ni0.2 are both magnetic materials with high magnetization value, the MR fluids retained very high yield stress value자기유변유체는 자성입자가 비자성 매개액에 분산된 현탁액 형태의 스마트물질이다. 외부 자기장 하에서 자성입자들 사이의 쌍극자로 인한 정자기성 상호작용으로 체인 형태의 구조가 형성되고, 이 구조가 유체의 흐름을 막아 매우 짧은 시간 내에 점도가 크게 향상되게 된다. 이러한 성질로 인해 자기유변유체의 유변특성을 외부 자기장을 통해 쉽게 조절하는 것이 가능하다. 이러한 외부자장에 대한 톡특한 반응성으로 인해, 햅틱 디바이스 파워스티어링 펌프, 그리고 자동차, 다리, 건물 등의 충격 방지 시스템에 자기유변유체를 이용할 수 있다. 하지만 자기유변유체의 활용은 자성입자의 침전에 대한 안정성의 부족함으로 인해 크게 제한 될 수 있다. 밀도가 높은 자성입자와 밀도가 낮은 매개액 사이의 큰 밀도차이로 인해 자성입자가 빠르게 가라앉게 되면, 자기유변유체의 수명이 크게 감소하게 된다. 이러한 문제를 해결하기 위한 한가지 방법으로 자성물질과 밀도가 낮은 물질(고분자, 실리카 탄소물질 등)을 결합하여 자성복합입자를 합성함으로써, 자성입자의 밀도를 낮추고 자기유변유체의 침강안정성을 높이는 연구들이 진행되어 왔다. 하지만 이러한 경우 복합자성입자의 자기적 성질이 저하되기 때문에 자기유변유체의 침강안정성과 성능이 서로 상충관계에 있다는 문제점을 가지고 있다. 본 논문에서는 뛰어난 성능과 침강안정성을 가지는 자기유변유체를 제조하기 위해 다양한 물질구성과 구조를 가지는 합성하였다. 첫 단계로 실리카를 템플레이트로 사용하여 할로우 구조를 가지는 고분자-Fe3O4 복합자성입자를 합성하였다. 할로우 구조 내부의 공동으로 인해, 입자의 밀도가 순수 Fe3O4 대비 40 % 수준까지 감소하였고, 이로 인해 자기유변유체의 침강안정성이 크게 상승하였다. 다음 연구로, 비자성 고분자로 인한 자기유변유체 성능의 감소를 최소화하기 위해, 간단한 전기방사 방법을 통해 계층구조를 가지는 Fe3O4 나노입자들을 제조하였다. 앞의 연구와 대비하여, 고분자의 배제를 통해 높은 자화값을 가지는 Fe3O4 나노구조입자들을 얻을 수 있었고, 이를 자기유변유체에 적용하여 할로우 고분자-Fe3O4 입자 기반 자기유변유체 대비 3배 이상의 성능을 가지는 자기유변유체를 얻을 수 있었다. 이와 동시에 Fe3O4 나노구조입자 내부에 생성된 기공들로 인해 순수 Fe3O4 대비 밀도가 약 23 % 정도 감소하였고, 이로 인해 침 Fe3O4 나노구조입자기반 자기유변유체의 침강안정성이 향상됨을 확인할 수 있었다. 자기유변유체의 성능과 침강안정성사이의 상충성을 최소화 하기 위해서 비구형의, CoFeNi 합금기반 자성 복합입자를 합성하고 자기유변유체에 적용하였다. 먼저 개질된 카본나노튜브 표면에 CoFeNi를 합성하는 방법을 통해 카본나노튜브-CoFeNi 복합체를 합성하였다. Fe3O4 대비 높은 CoFeNi의 자화값으로 인해 카본나노튜브-CoFeNi 복합체 기반 자기유변유체는 Fe3O4 복합체기반 유체 대비 3배에서 10배 이상의 뛰어난 유변성능을 보였다. 또한 종횡비가 높은 카본나노튜브로 인해 복합체가 유체 내에서 3차원 네트워크 구조를 형성하여, 빛 투과도 22 %의 매우 뛰어난 침강안정성을 보였다. 마지막으로 비자성 물질인 카본나노튜브를, 자성물질인 플레이크형 센더스트로 대체한 센더스트-CoFeNi 복합입자를 합성하여 자기유변유체에 적용하였다. 플레이크형 센더스트의 높은 종횡비로 인해 나타나는 높은 항력계수로 인해, 해당 자기유변유체는 빛 투과도 23 %의, 높은 입자밀도 대비 매우 뛰어난 침강안정성을 보였다. 동시에, 센더스트 CoFeNi 모두 높은 자화값을 가지는 자성물질이기 때문에, 센더스트-CoFeNi 기반 자기유변유체의 성능이 카본나노튜브-CoFeNi 유체 대비 크게 향상되는 것을 확인할 수 있었다.Contents Abstract ………………………………………………………..........i Contents ……………………………………………………….........v List of Tables ………………………………………………….........x List of Figures ………………………………………………..........xi Chapter 1. Introduction ……………………………………............1 1. 1. Magnetorheological (MR) Fluids and Applications………………….........1 1. 2. Long-Term Stability Problem and Proposed Solutions ……………...........4 1. 3. Research Objectives ………………………………………………….…...7 References ………………………………...........................................................9 Chapter 2. Backgrounds …………………….……………….......16 2. 1. Definition of Terms …………..................................................................16 2. 1. 1. Shear Stress …………........................................................................16 2. 1 .2. Shear Rate …………..........................................................................16 2. 1. 3. Shear Viscosity……............................................................................17 2. 1 .4. Viscoelastic Behavior .........................................................................17 2. 1. 4. 1. Storage Modulus and Loss Modulus ..........................................17 2. 2. Yield Stress of MR Fluids …………........................................................18 2. 2. 1. Rheological Models for Prediction of Dynamic and Static Yield Stress ………….............................................................................................................19 2. 2 .2. Yield Stress Dependency on the Magnetic Field Strength .................22 2. 3. Mechanism of Structures Evolution .........................................................25 References ………............................................................................................27 Chapter 3. Suspensions of Hollow Polydivinylbenzene Nanoparticles Decorated with Fe3O4 Nanoparticles as Magnetorheological Fluids for Microfluidics Applications ........31 3. 1. Introduction ………....................................................................................31 3. 2. Experimental Section ...............................................................................34 3. 2. 1. Synthesis of Hollow Polydivinylbezene (h-PDVB) Particles ............34 3. 2. 2. Deposition of Fe3O4 onto Hollow PDVB Particles ............................36 3. 2. 3. Characterization ..................................................................................37 3. 3. Results and Discussion .............................................................................41 3. 3. 1 Morphology and Structures ..................................................................41 3. 3. 2. Magnetorheological Behaviors ............................................................48 3. 3. 3. Long-Term Stability of Suspensions ...................................................62 3. 4. Conclusion ……….....................................................................................65 References ……….............................................................................................67 Chapter 4. Hierarchically Structured Fe3O4 Nanoparticles for High-Performance Magnetorheological Fluids with Long-Term Stability …………………….………………...................................74 4. 1. Introduction ………...................................................................................74 4. 2. Experimental Section ................................................................................77 4. 2. 1. Synthesis of Citric Acid-Capped Fe3O4 ..............................................77 4. 2. 2. Fabrication of HS-Fe3O4 with Electrospraying Process .....................78 4. 2. 3. Characterization ..................................................................................79 4. 3. Results and Discussion .............................................................................82 4. 3. 1. Morphology and Structures ................................................................82 4. 3. 2. Magnetorheological Behaviors ...........................................................89 4. 3. 3. Long-Term Stability of Suspensions .................................................103 4. 4. Conclusion ………..................................................................................106 References ………..........................................................................................108 Chapter 5. High-Performance Magnetorheological Fluids of Carbon Nanotube-CoFeNi Composites with Enhanced Long-Term Stability…………………….……………….................................116 5. 1. Introduction ………...............................................................................116 5. 2. Experimental Section ............................................................................119 5. 2. 1. Functionalization of Carbon Nanotubes ..........................................119 5. 2. 2. Synthesis of Co0.4¬Fe0.4Ni0.2 and CNT-Co0.4¬Fe0.4Ni0.2 .......................119 5. 2. 3. Characterization ...............................................................................120 5. 3. Results and Discussion ...........................................................................123 5. 3. 1. Morphology and Structures ..............................................................123 5. 3. 2. Magnetorheological Behaviors .........................................................130 5. 3. 3. Long-Term Stability of Suspensions .................................................142 5. 4. Conclusion ………..................................................................................145 References ………..........................................................................................146 Chapter 6. Sendust-CoFeNi Magnetic-Magnetic Composites-Based Magnetorheological Fluids for Simultaneous Improvement of Performance and Long-Term Stability ……………………..154 6. 1. Introduction ………................................................................................154 6. 2. Experimental Section .............................................................................157 6. 2. 1. Synthesis of Citric Acid-Capped Fe3O4 ...........................................157 6. 2. 2. Characterization ...............................................................................157 6. 3. Results and Discussion ...........................................................................159 6. 3. 1. Morphology and Structures ..............................................................159 6. 3. 2. Magnetorheological Behaviors ........................................................163 6. 3. 3. Long-Term Stability of Suspensions ................................................176 6. 4. Conclusion ………..................................................................................179 References ………..........................................................................................181 Chapter 7. Conclusions ………………………………………....188 7. 1. Overall conclusion ………......................................................................188 7. 2. Further works ………..............................................................................194 References ………...........................................................................................195 국문초록 ………...............................................................................................196 List of Publication ………………………………………….......199 Appendix …………………………………………..........…........201 Appendix A. Nonisothermal Crystallization Behaviors of Structure-Modified Polyamides (Nylon 6s) ...............................................................................201Docto

    Graphene-Polymer Composites II

    Get PDF
    Graphene-polymer nanocomposites continue to gain interest in diverse scientific and technological fields. Graphene-based nanomaterials present the advantages of other carbon nanofillers, like electrical and thermal conductivity, while having significantly lower production costs when compared to materials such as carbon nanotubes, for instance. In addition, in the oxidized forms of graphene, the large specific area combined with a large quantity of functionalizable chemical groups available for physical or chemical interaction with polymers, allow for good dispersion and tunable binding with the surrounding matrix. Other features are noteworthy in graphene-based nanomaterials, like their generally good biocompatibility and the ability to absorb near-infrared radiation, allowing for the use in biomedical applications, such as drug delivery and photothermal therapy.This Special Issue provides an encompassing view on the state of the art of graphene-polymer composites, showing how current research is dealing with new and exciting challenges. The published papers cover topics ranging from novel production methods and insights on mechanisms of mechanical reinforcement of composites, to applications as diverse as automotive and aeronautics, cancer treatment, anticorrosive coatings, thermally conductive fabrics and foams, and oil-adsorbent aerogels

    On the advancement of core/shell titanium dioxide nanomaterials for microwave absorption

    Get PDF
    Title from PDF of title page viewed May 21, 2020Dissertation advisor: Xiaobo ChenVitaIncludes bibliographical references (pages 139-160)Thesis (Ph.D.)--Department of Chemistry and Department of Geosciences. University of Missouri--Kansas City, 2020Controlling the interactions between incident electromagnetic energy and matter is of critical importance for many civil and military applications, such as photocatalysis, solar cells, optics, radar detection, communications, information processing and transport, et al. For interactions in the microwave region of the electromagnetic spectrum, the generation of materials which have desirable dielectric and magnetic properties is critical, as these properties ultimately determine how a material system interacts with these incident electromagnetic waves. In this dissertation, we present a comprehensive report of the microwave absorption properties of metal/hydrogen treated anatase titanium dioxide nanoparticles, where the synergistic treatment induces favorable structural, optical, and microwave absorption properties, which can be fine-tuned via controlling the temperature of materials treatment. Furthermore, this material demonstrates strong reflection loss and effective bandwidth properties, which places its performance within the top quintile of all materials produced. The high efficiency of microwave absorption is likely linked to the disordering-induced property changes in the materials. Along with the increased microwave absorption properties are largely increased visible-light and IR absorptions, and enhanced electrical conductivity and reduced skin-depth, which is likely related to the interfacial defects within the TiO2 nanoparticles caused by the metal/hydrogen treatment.Introduction -- Proposal -- Methods -- Aluminum/hydrogen treated titanium dioxide nanoparticles -- Magnesium/hydrogen treated titanium dioxide nanoparticles -- Closing remarks -- Appendix A. Supplemental figures -- Appendix B. Softwar

    GRAPHENE-BASED SEMICONDUCTOR AND METALLIC NANOSTRUCTURED MATERIALS

    Get PDF
    Exciting periods of scientific research are often associated with discoveries of novel materials. Such period was brought about by the successful preparation of graphene which is a 2D allotrope of carbon with remarkable electronic, optical and mechanical properties. Functional graphene-based nanocomposites have great promise for applications in various fields such as energy conversion, opteoelectronics, solar cells, sensing, catalysis and biomedicine. Herein, microwave and laser-assisted synthetic approaches were developed for decorating graphene with various semiconductor, metallic or magnetic nanostructures of controlled size and shape. We developed a scalable microwave irradiation method for the synthesis of graphene decorated with CdSe nanocrystals of controlled size, shape and crystalline structure. The efficient quenching of photoluminescence from the CdSe nanocrystals by graphene has been explored. The results provide a new approach for exploring the size-tunable optical properties of CdSe nanocrystals supported on graphene which could have important implications for energy conversion applications. We also extended this approach to the synthesis of Au-ceria-graphene nanocomposites. The synthesis is facilely conducted at mild conditions using ethylenediamine as a solvent. Results reveal significant CO conversion percentages between 60-70% at ambient temperatures. Au nanostructures have received significant attention because of the feasibility to tune their optical properties by changing size or shape. The coupling of the photothermal effects of these Au nanostructures of controlled size and shape with GO nanosheets dispersed in water is demonstrated. Our results indicate that the enhanced photothermal energy conversion of the Au-GO suspensions could to lead to a remarkable increase in the heating efficiency of the laser-induced melting and size reduction of Au nanostructures. The Au-graphene nanocomposites are potential materials for photothermolysis, thermochemical and thermomechanical applications. We developed a facile method for decorating graphene with magnetite nanocrystals of various shapes (namely, spheres, cubes and prisms) by the microwave-assisted-reduction of iron acetylacetonate in benzyl ether. The shape control was achieved by tuning the mole ratio between the oleic acid and the oleyamine. The structural, morphological and physical properties of graphene-based nanocomposites described herein were studied using standard characterization tools such as TEM, SEM, UV-Vis and PL spectroscopy, powder X-ray diffraction, XPS and Raman spectroscopy

    Polyolefins as polymeric matrix for magnetic and conductive nanocomposites

    Get PDF
    In this present thesis polyethylene (PE) and polypropylene (PP) conductive and magnetic nanocomposites were synthesis by in situ polymerization using metallocene catalysts, bis(n-butyl cyclopentadienyl) zirconium dichloride [(nBuCp)2ZrCl2] for ethylene polymerization and racethylene bis(indenyl) zirconium dichloride[rac-Et(Ind)2ZrCl2)] for propylene polymerization and methylaluminoxane (MAO) as a co-catalyst. The preparation of PP magnetic and conducting nanocomposites was also done by melt mixing method. The fillers used were carbon nanotubes with iron nanoparticles, reduced graphite oxide and activated carbon with nickel encapsulated. The carbon nanotubes (CNT), were obtained by two approaches, (i) chemical vapor deposition method (CVD) using ferrocene as the precursor and catalyst and high surface area silica (SiO2) as support of synthesis, (ii) pyrolysis of sawdust from the furniture industry. Reduced graphite oxide (rGO) was obtained from oxidation of the flakes using a modified Staudenmaier method and thermal reduction. The nickel activated carbon (Ni-C) was obtained by microwave assisted pyrolysis. The catalytic activities of the in situ polymerization of ethylene or propylene were high hence no deactivation of the catalysts was observed. The fillers were well dispersed in the polyethylene and polypropylene matrices as evidenced by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Only small amounts of magnetic fillers, 0.8 - 0.9 wt.%, changed the diamagnetic polyethylene and polypropylene matrixes into ferromagnetic polymers at room temperature. The addition of the 2.4 wt.% of rGO or 3.8 wt.% of CNT changes the insulating polyolefin matrices to semi-conductors. The thermal stability of the nanocomposites investigated by thermogravimetric analysis and differential scanning calorimetry showed an enhancement in the maximum degradation, crystallization and melting temperatures as compared to the neat polymer. The elastic modulus was enhanced by the presence of the fillers. Some fillers decreased the permeability towards oxygen. The novelty of the work was the production of thermoplastics with all the same or higher outstanding properties of the original matrixes increased of magnetic and conducting properties with the use of a small amount of the filler. The outstanding properties of the nanocomposites are attributed to the use of the two techniques, namely the encapsulation of iron in the CNT which protect iron particles from easy oxidation, secondly the in situ polymerization which guarantee the uniform dispersion of the filler in the polymer matrix. There were also tested two fillers that can be considered eco-friendly because they come from waste.Na presente tese, nanocompósitos condutores e magnéticos de polietileno e polipropileno foram sintetizados pela polimerização in situ utilizando o catalisador de metalocênico dicloreto de bis(n-butil ciclopentadienil) zircônio [(nBuCp)2ZrCl2] na polimerização de etileno e [racetileno bis (indenil) zircônio (rac-Et (Ind)2ZrCl2)] na polimerização de propileno e metilaluminoxano (MAO) como co-catalisador. A preparação de nanocompositos magnéticos e condutores de PP também foi feita por meio do método de mistura em fusão. As cargas utilizadas foram nanotubos de carbono com nanopartículas de ferro, óxido de grafite reduzido e carvão ativado com níquel encapsulado. Os nanotubos de carbono (CNT) foram sintetizados por dois método: i) deposição química de vapor (CVD) utilizando ferroceno como precursor e catalisador e sílica de alta área superficial (SiO2) como suporte de síntese, ii) pirólise da serragem da indústria moveleira. O óxido de grafite reduzido (rGO) foi obtido a partir da oxidação dos flocos usando o método de Staudenmaier modificado e redução térmica. O carbono ativado com níquel (Ni-C) foi obtido por pirólise assistida por microondas. As atividades catalíticas da polimerização in situ de etileno e propileno foram altas, portanto, nenhuma desativação dos catalisadores foi observada. As cargas foram bem dispersas nas matrizes de polietileno e polipropileno, como evidenciado por microscopia eletrônica de varredura (SEM) e microscopia eletrônica de transmissão (TEM). Apenas pequenas quantidades de nanopartículas magnéticas, 0,8 - 0,9% em peso, alteraram as matrizes diamagnéticas de polietileno e polipropileno em polímeros ferromagnéticos à temperatura ambiente. A adição de 2,8% em peso de rGO ou 3,8% em peso de CNT altera as matrizes isolantes de poliolefina para semi-condutores. O módulo elástico aumentou pela presença da cargas. Alguma nanopartículas diminuíram a permeabilidade em relação ao oxigênio. A novidade do trabalho foi a produção de termoplásticos mantendo ou melhorando as propriedades das matrizes originais e incrementando propriedades magnéticas e condutoras com o uso de uma pequena quantidade de nanopartículas. As propriedades notáveis dos nanocompósitos são atribuídas ao uso principalmente de duas técnicas, isto é, o encapsulamento de ferro nos CNT que protege as partículas de ferro da oxidação, e também a utilização da polimerização in situ que garante a dispersão uniforme da carga na matriz polimérica. Também XVI foram testados dois enchimentos que podem ser considerados ecológicos porque provêm de resíduos

    Polymer Materials in Environmental Chemistry

    Get PDF
    The book entitled “Polymer Materials in Environmental Chemistry” focuses on functionalized natural/synthetic polymeric materials and their preparation, characterization, and multidimensional applications. This book extensively appraises the research papers on the latest developments of the functionalized natural/synthetic polymers, such as the effect of functionalized polymeric additives on the degradation of aliphatic polyesters, development of nanoparticle functionalized bio-based or composite polymeric structures, water or wastewater purification, natural fibers or clay-based hybrid polymers and their applications, environmental remediation of antibiotics and dyes using polymer-based nanofibers, bio-based polymeric conjugate for the synthesis of bimetallic nanoparticles and their catalytic degradation of ecological pollutant, polymeric-grafted membranes based on ethyl cellulose for gas separation, and polyamide–laccase nanofiber membranes for the degradation of organic and antibiotics from water. Additionally, the book envisages the reviews on recent developments in the techniques and visualization of biopolymer structures and their derivatives and fabrication and characterization of polymeric nanofibers via multidimensional electrospinning techniques and their appliances in environmental pollutant removal

    Avanços na síntese e caracterização de nanocompositos multifuncionais de níquel/óxido de grafeno reduzido

    Get PDF
    Doutoramento em Engenharia MecânicaO grafeno é constituído por uma monocamada de átomos de carbono dispostos numa espécie de rede hexagonal perfeita. Devido às suas propriedades extraordinárias, este nanomaterial tem suscitado um grande interesse tanto no setor científico como no industrial. A este respeito, a investigação em torno do grafeno mostrou um aumento exponencial em áreas tão diferentes como a energia, biomedicina, eletrónica, entre outras. O óxido de grafeno (GO), um dos derivados de grafeno, foi considerado como um substrato interessante para o desenvolvimento de nanocompositos. Isto deve-se fundamentalmente à presença de grupos funcionais de oxigénio na superfície do grafeno, os quais proporcionam locais reativos para a nucleação e o crescimento de outras estruturas. O níquel (Ni) é um metal de transição muito abundante na terra, possui uma superfície brilhante comum à maioria dos metais e é dúctil e maleável possuindo propriedades magnéticas e catalíticas superiores, condutividade térmica e elétrica razoáveis sendo muito utilizado em diferentes aplicações. As nanopartículas (NPs) de Ni são utilizadas como catalisadores heterogéneos e receberam atenção notável devido ao seu baixo custo, reduzida toxicidade, baixa corrosão, entre outras características. Desta forma, a funcionalização do GO com NPs de Ni pode constituir uma nova família de nanocompósitos com propriedades sinérgicas. Esta tese está focada no controlo da síntese de nanocompósitos Ni/GO, uma vez que o tamanho, a morfologia e a dispersão de NPs de Ni no grafeno afetam as suas funcionalidades e estão em dependência direta com as metodologias de síntese. Em primeiro lugar, foi usado um método hidrotérmico de fácil implementação e execução num passo único. Foram estudados vários parâmetros de síntese, incluindo temperatura, tempo de reação e agente redutor. O controlo destes parâmetros influenciou efetivamente o tamanho das NPs de Ni, variando estas de 150 a 900 nm, a morfologia variou de forma esférica a formato em espiga e de partículas finas bem distribuídas para agregados. Em seguida, o controlo do tamanho das NPs de Ni para valores inferiores a 10 nm e com distribuição de tamanho reduzido no substrato foi conseguido através de um procedimento de síntese em dois passos com base num método solvotérmico seguido por tratamento térmico sob atmosfera redutora de H2. O tempo de reação mostrou ser um fator chave para controlar a distribuição e o tamanho das NPs de Ni simultaneamente com a redução do GO (rGO). O aquecimento em atmosfera de H2 foi crucial para formar as NPs de Ni metálicas cristalinas. A influência de um tratamento térmico adicional em atmosferas redutora e inerte sobre a estrutura do nanocompósito Ni/rGO foi também investigada. Diferentes nanocompósitos apresentaram boa estabilidade térmica sob H2 até à temperatura de 450 °C durante 2 horas. O tratamento a 900 °C sob o fluxo de árgon alterou a estrutura do Ni/rGO por formação de “sulcos” através da rede de carbono e coalescência das NPs de Ni com formação de partículas maiores. O estudo das propriedades eletrofisicas dos nanocompositos Ni/rGO mostrou que estas são dependentes do tamanho e estrutura das NPs de Ni nas folhas de rGO. Esta é uma potencial vantagem do método de síntese desenvolvido para o design de diferentes nanocompositos de Ni/rGO que poderão ser materiais favoráveis para aplicação em dispositivos eletrónicos integrados.Graphene, the world thinnest material made of carbon atoms in a dense honeycomb network has captured a great interest in both scientific and industry sectors due to its remarkable properties. In this regard, the graphene research is facing an incredible rise in different areas such as energy, biomedical, sensor and electronic applications, between others. Graphene oxide (GO), one of the graphene derivatives, has been considered as an interesting substrate to build nanocomposites. This is due to the presence of oxygen functionalities at the graphene surface which provides reactive sites for the nucleation and growth of other structures. Nickel (Ni) is a transition metal very abundant on earth, it has a shiny surface common to most metals and is both ductile and malleable possessing different properties such as superior magnetic and catalysis properties, a fairly good heat and electrical conductivity and is widely used in different areas of application. Ni nanoparticles (NPs) find use as heterogeneous catalyst and received noteworthy attention because of its inexpensive, non-toxic, low corrosion, waste minimization, between other characteristics. In this way, the functionalization of GO with Ni NPs can establish a new family of nanocomposites with synergic properties. This thesis is focused on the control of the synthesis of Ni/GO nanocomposites, since the size, morphology and dispersion of Ni NPs on graphene affect their functionalities and are in direct dependence with the synthesis methodologies. First, a facile one pot hydrothermal method was introduced and various synthesis parameters including temperature, reaction time and reducing agent were investigated. The control of these parameters effectively influenced the Ni size, ranging from 150 to 900 nm, the morphology from spherical to spiky shape and from well distributed fine particles to the big aggregation. Then, the control of the Ni NPs size to values of less than 10 nm with narrow size distribution on the substrate was achieved via a two-step synthesis procedure based on a solvothermal method followed by a heat treatment under H2 reducing atmosphere. The reaction time was shown to be a key factor to control the size and size distribution of Ni NPs simultaneously through the reduction of GO (rGO). Heating treatment under H2 was crucial to form the crystalized metallic Ni NPs. The influence of further thermal treatment under reducing and inert atmospheres on the structure of Ni/rGO nanocomposite was also investigated. Different nanocomposites showed a good thermal stability under H2 up to 450°C during 2 hours’ treatment. Higher temperature (900°C) under Argon flow changed the structure of Ni/rGO by formation of trenches through the carbon etching and coalescence of Ni NPs to form bigger particles. The study of the electrophysical properties of Ni/rGO showed that these properties are dependent on the size and structure of Ni NPs on rGO nanosheets. This is the potential advantage of the synthesis method developed for designing different matrix of Ni/rGO nanocomposites which could be a favorable material for integrated electronic devices application
    corecore