51 research outputs found

    Codensity Lifting of Monads and its Dual

    Full text link
    We introduce a method to lift monads on the base category of a fibration to its total category. This method, which we call codensity lifting, is applicable to various fibrations which were not supported by its precursor, categorical TT-lifting. After introducing the codensity lifting, we illustrate some examples of codensity liftings of monads along the fibrations from the category of preorders, topological spaces and extended pseudometric spaces to the category of sets, and also the fibration from the category of binary relations between measurable spaces. We also introduce the dual method called density lifting of comonads. We next study the liftings of algebraic operations to the codensity liftings of monads. We also give a characterisation of the class of liftings of monads along posetal fibrations with fibred small meets as a limit of a certain large diagram.Comment: Extended version of the paper presented at CALCO 2015, accepted for publication in LMC

    Relation Liftings on Preorders and Posets

    Full text link
    The category Rel(Set) of sets and relations can be described as a category of spans and as the Kleisli category for the powerset monad. A set-functor can be lifted to a functor on Rel(Set) iff it preserves weak pullbacks. We show that these results extend to the enriched setting, if we replace sets by posets or preorders. Preservation of weak pullbacks becomes preservation of exact lax squares. As an application we present Moss's coalgebraic over posets

    Relation Liftings on Preorders and Posets

    Get PDF
    The category Rel(Set) of sets and relations can be described as a category of spans and as the Kleisli category for the powerset monad. A set-functor can be lifted to a functor on Rel(Set) iff it preserves weak pullbacks. We show that these results extend to the enriched setting, if we replace sets by posets or preorders. Preservation of weak pullbacks becomes preservation of exact lax squares. As an application we present Moss's coalgebraic over posets

    Relation lifting, with an application to the many-valued cover modality

    Get PDF
    We introduce basic notions and results about relation liftings on categories enriched in a commutative quantale. We derive two necessary and sufficient conditions for a 2-functor T to admit a functorial relation lifting: one is the existence of a distributive law of T over the "powerset monad" on categories, one is the preservation by T of "exactness" of certain squares. Both characterisations are generalisations of the "classical" results known for set functors: the first characterisation generalises the existence of a distributive law over the genuine powerset monad, the second generalises preservation of weak pullbacks. The results presented in this paper enable us to compute predicate liftings of endofunctors of, for example, generalised (ultra)metric spaces. We illustrate this by studying the coalgebraic cover modality in this setting.Comment: 48 pages, accepted for publication in LMC

    Graded Monads and Graded Logics for the Linear Time - Branching Time Spectrum

    Get PDF
    State-based models of concurrent systems are traditionally considered under a variety of notions of process equivalence. In the case of labelled transition systems, these equivalences range from trace equivalence to (strong) bisimilarity, and are organized in what is known as the linear time - branching time spectrum. A combination of universal coalgebra and graded monads provides a generic framework in which the semantics of concurrency can be parametrized both over the branching type of the underlying transition systems and over the granularity of process equivalence. We show in the present paper that this framework of graded semantics does subsume the most important equivalences from the linear time - branching time spectrum. An important feature of graded semantics is that it allows for the principled extraction of characteristic modal logics. We have established invariance of these graded logics under the given graded semantics in earlier work; in the present paper, we extend the logical framework with an explicit propositional layer and provide a generic expressiveness criterion that generalizes the classical Hennessy-Milner theorem to coarser notions of process equivalence. We extract graded logics for a range of graded semantics on labelled transition systems and probabilistic systems, and give exemplary proofs of their expressiveness based on our generic criterion

    Codensity Liftings of Monads

    Get PDF
    We introduce a method to lift monads on the base category of a fibration to its total category using codensity monads. This method, called codensity lifting, is applicable to various fibrations which were not supported by the categorical >>-lifting. After introducing the codensity lifting, we illustrate some examples of codensity liftings of monads along the fibrations from the category of preorders, topological spaces and extended psuedometric spaces to the category of sets, and also the fibration from the category of binary relations between measurable spaces. We next study the liftings of algebraic operations to the codensity-lifted monads. We also give a characterisation of the class of liftings (along posetal fibrations with fibred small limits) as a limit of a certain large diagram

    On refinement of generic state-based software components

    Get PDF
    10th International Conference, AMAST 2004, Stirling, Scotland, UK, July 12-16, 2004. ProceedingsThis paper characterizes refinement of state-based software components modelled as pointed coalgebras for some Set endofunctors. The proposed characterization is parametric on a specification of the underlying behaviour model introduced as a strong monad. This provides a basis to reason about (and transform) state-based software designs

    Transposing partial components: an exercise on coalgebraic refinement

    Get PDF
    A partial component is a process which fails or dies at some stage, thus exhibiting a finite, more ephemeral behaviour than expected (eg, operating system crash). Partiality --- which is the rule rather than exception in formal modelling --- can be treated mathematically via totalization techniques. In the case of partial functions, totalization involves error values and exceptions. In the context of a coalgebraic approach to component semantics, this paper argues that the behavioural counterpart to such functional techniques should extend behaviour with try-again cycles preventing from component collapse, thus extending totalization or transposition from the algebraic to the coalgebraic context. We show that a refinement relationship holds between original and totalized components which is reasoned about in a coalgebraic approach to component refinement expressed in the pointfree binary relation calculus. As part of the pragmatic aims of this research, we also address the factorization of every such totalized coalgebra into two coalgebraic components --- the original one and an added front-end --- which cooperate in a client-serverstyle.Fundação para a Ciência e a Tecnologia (FCT) - PURe Project under contract POSI/ICHS/44304/2002

    Categories for Dynamic Epistemic Logic

    Full text link
    The primary goal of this paper is to recast the semantics of modal logic, and dynamic epistemic logic (DEL) in particular, in category-theoretic terms. We first review the category of relations and categories of Kripke frames, with particular emphasis on the duality between relations and adjoint homomorphisms. Using these categories, we then reformulate the semantics of DEL in a more categorical and algebraic form. Several virtues of the new formulation will be demonstrated: The DEL idea of updating a model into another is captured naturally by the categorical perspective -- which emphasizes a family of objects and structural relationships among them, as opposed to a single object and structure on it. Also, the categorical semantics of DEL can be merged straightforwardly with a standard categorical semantics for first-order logic, providing a semantics for first-order DEL.Comment: In Proceedings TARK 2017, arXiv:1707.0825
    • …
    corecore