67 research outputs found

    Core-guided minimal correction set and core enumeration

    Get PDF
    A set of constraints is unsatisfiable if there is no solution that satisfies these constraints. To analyse unsatisfiable problems, the user needs to understand where inconsistencies come from and how they can be repaired. Minimal unsatisfiable cores and correction sets are important subsets of constraints that enable such analysis. In this work, we propose a new algorithm for extracting minimal unsatisfiable cores and correction sets simultaneously. Building on top of the relaxation and strengthening framework, we introduce novel techniques for extracting these sets. Our new solver significantly outperforms several state of the art algorithms on common benchmarks when it comes to extracting correction sets and compares favorably on core extraction.Peer ReviewedPostprint (published version

    Logic-Based Explainability in Machine Learning

    Full text link
    The last decade witnessed an ever-increasing stream of successes in Machine Learning (ML). These successes offer clear evidence that ML is bound to become pervasive in a wide range of practical uses, including many that directly affect humans. Unfortunately, the operation of the most successful ML models is incomprehensible for human decision makers. As a result, the use of ML models, especially in high-risk and safety-critical settings is not without concern. In recent years, there have been efforts on devising approaches for explaining ML models. Most of these efforts have focused on so-called model-agnostic approaches. However, all model-agnostic and related approaches offer no guarantees of rigor, hence being referred to as non-formal. For example, such non-formal explanations can be consistent with different predictions, which renders them useless in practice. This paper overviews the ongoing research efforts on computing rigorous model-based explanations of ML models; these being referred to as formal explanations. These efforts encompass a variety of topics, that include the actual definitions of explanations, the characterization of the complexity of computing explanations, the currently best logical encodings for reasoning about different ML models, and also how to make explanations interpretable for human decision makers, among others

    Investigations into Proof Structures

    Full text link
    We introduce and elaborate a novel formalism for the manipulation and analysis of proofs as objects in a global manner. In this first approach the formalism is restricted to first-order problems characterized by condensed detachment. It is applied in an exemplary manner to a coherent and comprehensive formal reconstruction and analysis of historical proofs of a widely-studied problem due to {\L}ukasiewicz. The underlying approach opens the door towards new systematic ways of generating lemmas in the course of proof search to the effects of reducing the search effort and finding shorter proofs. Among the numerous reported experiments along this line, a proof of {\L}ukasiewicz's problem was automatically discovered that is much shorter than any proof found before by man or machine.Comment: This article is a continuation of arXiv:2104.1364

    Design and optimisation of scientific programs in a categorical language

    Get PDF
    This thesis presents an investigation into the use of advanced computer languages for scientific computing, an examination of performance issues that arise from using such languages for such a task, and a step toward achieving portable performance from compilers by attacking these problems in a way that compensates for the complexity of and differences between modern computer architectures. The language employed is Aldor, a functional language from computer algebra, and the scientific computing area is a subset of the family of iterative linear equation solvers applied to sparse systems. The linear equation solvers that are considered have much common structure, and this is factored out and represented explicitly in the lan-guage as a framework, by means of categories and domains. The flexibility introduced by decomposing the algorithms and the objects they act on into separate modules has a strong performance impact due to its negative effect on temporal locality. This necessi-tates breaking the barriers between modules to perform cross-component optimisation. In this instance the task reduces to one of collective loop fusion and array contrac

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors
    corecore