5,756 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Univariate and multivariate pattern analysis of preterm subjects: a multimodal neuroimaging study

    Get PDF
    Background: Widespread lasting functional connectivity (FC) and brain volume changes in cortices and subcortices after premature birth have been researched in recent studies. However, the relationship remains unclear between spontaneously slow blood oxygen dependent level (BOLD) fluctuations and gray matter volume (GMV) changes in specific brain areas, such as temporal insular cortices, and whether classification methods based on MRI could be successfully applied to the identification of preterm individuals. In this thesis I hypothesized that in prematurely born adults 1. Ongoing neural excitability and brain activity, as estimated by regional functional connectivity of resting state functional MRI (rs-fMRI) is accompanied with altered low-frequency fluctuations and neonatal complications; 2. Altered regional functional connectivity is connected with superimposed cerebral structural reductions; and 3. multivariate neuroanatomical and functional brain patterns could be treated as features to identify preterm subjects from term subjects individually. Methods: To investigate these hypotheses, the principal results of structural alterations were measured with voxel-based morphometry (VBM), while rs-fMRI outcomes were estimated with amplitude of low-frequency fluctuations (ALFF) in analysis with ninety-four very preterm/very low birth weight (VP/VLBW) and ninety-two full-term (FT) born young adults. Results: The results of the thesis support the hypotheses by showing that, in univariate results, first in VP/VLBW grownups, ALFF was decreased in the left lateral temporal cortices no matter with global signal regression, and this reduction was closely associated with neonatal complications and cognitive variables. Second overlapped brain regions were found between reduced ALFF and reduced brain volumes in the left temporal cortices, and positively associated with each other, demonstrating a potential relationship between VBM and ALFF in this brain area. In multimodal multivariate pattern recognition analysis (MVPA), the gray matter volume (GMV) classifier displayed a higher accuracy (80.7%) contrast with the ALFF classifier (77.4%). The late fusion of GMV and ALFF did not outperform single GMV modality classification by reaching 80.4% accuracy. Moderator analysis from both rs-fMRI and structural MRI (sMRI) uncovered that the neuro-prematurity performance was predominantly determined by neonatal complications. Conclusions: In conclusion, these outcomes exhibit the long term effects of premature labour on lateral temporal cortices, which changed in both ongoing BOLD fluctuations and decreased cerebral structural volumes. This thesis further provided evidence that multivariate pattern analysis such as support vector machine (SVM) may identify imaging-based biomarkers and reliably detect signatures of preterm birth

    Univariate and multivariate pattern analysis of preterm subjects: a multimodal neuroimaging study

    Get PDF
    Background: Widespread lasting functional connectivity (FC) and brain volume changes in cortices and subcortices after premature birth have been researched in recent studies. However, the relationship remains unclear between spontaneously slow blood oxygen dependent level (BOLD) fluctuations and gray matter volume (GMV) changes in specific brain areas, such as temporal insular cortices, and whether classification methods based on MRI could be successfully applied to the identification of preterm individuals. In this thesis I hypothesized that in prematurely born adults 1. Ongoing neural excitability and brain activity, as estimated by regional functional connectivity of resting state functional MRI (rs-fMRI) is accompanied with altered low-frequency fluctuations and neonatal complications; 2. Altered regional functional connectivity is connected with superimposed cerebral structural reductions; and 3. multivariate neuroanatomical and functional brain patterns could be treated as features to identify preterm subjects from term subjects individually. Methods: To investigate these hypotheses, the principal results of structural alterations were measured with voxel-based morphometry (VBM), while rs-fMRI outcomes were estimated with amplitude of low-frequency fluctuations (ALFF) in analysis with ninety-four very preterm/very low birth weight (VP/VLBW) and ninety-two full-term (FT) born young adults. Results: The results of the thesis support the hypotheses by showing that, in univariate results, first in VP/VLBW grownups, ALFF was decreased in the left lateral temporal cortices no matter with global signal regression, and this reduction was closely associated with neonatal complications and cognitive variables. Second overlapped brain regions were found between reduced ALFF and reduced brain volumes in the left temporal cortices, and positively associated with each other, demonstrating a potential relationship between VBM and ALFF in this brain area. In multimodal multivariate pattern recognition analysis (MVPA), the gray matter volume (GMV) classifier displayed a higher accuracy (80.7%) contrast with the ALFF classifier (77.4%). The late fusion of GMV and ALFF did not outperform single GMV modality classification by reaching 80.4% accuracy. Moderator analysis from both rs-fMRI and structural MRI (sMRI) uncovered that the neuro-prematurity performance was predominantly determined by neonatal complications. Conclusions: In conclusion, these outcomes exhibit the long term effects of premature labour on lateral temporal cortices, which changed in both ongoing BOLD fluctuations and decreased cerebral structural volumes. This thesis further provided evidence that multivariate pattern analysis such as support vector machine (SVM) may identify imaging-based biomarkers and reliably detect signatures of preterm birth

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Fast and robust learning by reinforcement signals: explorations in the insect brain

    Get PDF
    We propose a model for pattern recognition in the insect brain. Departing from a well-known body of knowledge about the insect brain, we investigate which of the potentially present features may be useful to learn input patterns rapidly and in a stable manner. The plasticity underlying pattern recognition is situated in the insect mushroom bodies and requires an error signal to associate the stimulus with a proper response. As a proof of concept, we used our model insect brain to classify the well-known MNIST database of handwritten digits, a popular benchmark for classifiers. We show that the structural organization of the insect brain appears to be suitable for both fast learning of new stimuli and reasonable performance in stationary conditions. Furthermore, it is extremely robust to damage to the brain structures involved in sensory processing. Finally, we suggest that spatiotemporal dynamics can improve the level of confidence in a classification decision. The proposed approach allows testing the effect of hypothesized mechanisms rather than speculating on their benefit for system performance or confidence in its responses

    Spectrogram Analysis of Blood Pressure on Neonates with Hypoxic Ischemic Encephalopathy (HIE)

    Get PDF
    This paper explores the correlation between blood pressure fluctuations and the severity of Hypoxic Ischemic Encephalopathy (HIE). Via isolating particular frequency bands of blood pressure signal and calculating their power, the researcher was able to discern patients with different HIE severity and verified the assumption that less fluctuation in blood pressure is correlated with more severe brain injury. Furthermore, the researcher attempted to construct a prediction algorithm based on power within certain frequency bands of the blood pressure signal

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications

    Application of Pattern Recognition Techniques to the Classification of Full-Term and Preterm Infant Cry

    Get PDF
    Objectives: Scientific and clinical advances in perinatology and neonatology have enhanced the chances of survival of preterm and very low weight neonates. Infant cry analysis is a suitable noninvasive complementary tool to assess the neurologic state of infants particularly important in the case of preterm neonates. This article aims at exploiting differences between full-term and preterm infant cry with robust automatic acoustical analysis and data mining techniques. Study design: Twenty-two acoustical parameters are estimated in more than 3000 cry units from cry recordings of 28 full-term and 10 preterm newborns. Methods: Feature extraction is performed through the BioVoice dedicated software tool, developed at the Biomedical Engineering Lab, University of Firenze, Italy. Classification and pattern recognition is based on genetic algorithms for the selection of the best attributes. Training is performed comparing four classifiers: Logistic Curve, Multilayer Perceptron, Support Vector Machine, and Random Forest and three different testing options: full training set, 10-fold cross-validation, and 66% split. Results: Results show that the best feature set is made up by 10 parameters capable to assess differences between preterm and full-term newborns with about 87% of accuracy. Best results are obtained with the Random Forest method (receiver operating characteristic area, 0.94). Conclusions: These 10 cry features might convey important additional information to assist the clinical specialist in the diagnosis and follow-up of possible delays or disorders in the neurologic development due to premature birth in this extremely vulnerable population of patients. The proposed approach is a first step toward an automatic infant cry recognition system for fast and proper identification of risk in preterm babies
    corecore