136 research outputs found

    Hemorrhagic brain stroke detection by using microwaves: Preliminary two-dimensional reconstructions

    Get PDF
    Preliminary numerical results concerning the application of a Gauss-Newton method for diagnostic purposes of hemorrhagic brain strokes are reported. Interrogating microwaves are used in a multistatic and multiview arrangement. The reported results concern a two-dimensional model under transverse magnetic illumination conditions

    Microwave Sensing and Imaging

    Get PDF
    In recent years, microwave sensing and imaging have acquired an ever-growing importance in several applicative fields, such as non-destructive evaluations in industry and civil engineering, subsurface prospection, security, and biomedical imaging. Indeed, microwave techniques allow, in principle, for information to be obtained directly regarding the physical parameters of the inspected targets (dielectric properties, shape, etc.) by using safe electromagnetic radiations and cost-effective systems. Consequently, a great deal of research activity has recently been devoted to the development of efficient/reliable measurement systems, which are effective data processing algorithms that can be used to solve the underlying electromagnetic inverse scattering problem, and efficient forward solvers to model electromagnetic interactions. Within this framework, this Special Issue aims to provide some insights into recent microwave sensing and imaging systems and techniques

    Microwave Tomography With LSTM-Based Processing of the Scattered Field

    Get PDF
    The quantitative inspection of unknown targets or bodies by means of microwave tomography requires a proper modeling of the field scattered by the structures under test, which in turn depends on several factors related to the adopted antennas and measurement configuration. In this article, a multifrequency tomographic approach in nonconstant-exponent Lebesgue spaces is enhanced by a preliminary step that processes the measured scattered field with a neural network based on long short-term memory cells. In the considered cases, this approach allows dealing with measurements in three-dimensional settings obtained with non-ideal antennas and measurement points, while retaining a canonical two-dimensional formulation of the inverse problem. The adopted data-driven model is trained with a set of simulations of cylindrical targets performed with a finite-difference time domain method, considering a simplified bistatic measurement configuration as an initial case study. The inversion procedure is then validated with numerical simulations involving cylindrical and spherical structures

    Progress Report No. 23

    Get PDF
    Progress report of the Biomedical Computer Laboratory, covering period 1 July 1986 to 30 June 1987

    Impedance Sensors for Fast Multiphase Flow Measurement and Imaging

    Get PDF
    Multiphase flow denotes the simultaneous flow of two or more physically distinct and immiscible substances and it can be widely found in several engineering applications, for instance, power generation, chemical engineering and crude oil extraction and processing. In many of those applications, multiphase flows determine safety and efficiency aspects of processes and plants where they occur. Therefore, the measurement and imaging of multiphase flows has received much attention in recent years, largely driven by a need of many industry branches to accurately quantify, predict and control the flow of multiphase mixtures. Moreover, multiphase flow measurements also form the basis in which models and simulations can be developed and validated. In this work, the use of electrical impedance techniques for multiphase flow measurement has been investigated. Three different impedance sensor systems to quantify and monitor multiphase flows have been developed, implemented and metrologically evaluated. The first one is a complex permittivity needle probe which can detect the phases of a multiphase flow at its probe tip by simultaneous measurement of the electrical conductivity and permittivity at up to 20 kHz repetition rate. Two-dimensional images of the phase distribution in pipe cross section can be obtained by the newly developed capacitance wire-mesh sensor. The sensor is able to discriminate fluids with different relative permittivity (dielectric constant) values in a multiphase flow and achieves frame frequencies of up to 10 000 frames per second. The third sensor introduced in this thesis is a planar array sensor which can be employed to visualize fluid distributions along the surface of objects and near-wall flows. The planar sensor can be mounted onto the wall of pipes or vessels and thus has a minimal influence on the flow. It can be operated by a conductivity-based as well as permittivity-based electronics at imaging speeds of up to 10 000 frames/s. All three sensor modalities have been employed in different flow applications which are discussed in this thesis. The main contribution of this research work to the field of multiphase flow measurement technology is therefore the development, characterization and application of new sensors based on electrical impedance measurement. All sensors present high-speed capability and two of them allow for imaging phase fraction distributions. The sensors are furthermore very robust and can thus easily be employed in a number of multiphase flow applications in research and industry

    Measurement of Cerebral Circulation in Human

    Get PDF
    In this chapter, we review state-of-the-art non-invasive techniques to monitor and study cerebral circulation in humans. The measurement methods can be divided into two categories: direct and indirect methods. Direct methods are mostly based on using contrast agents delivered to blood circulation. Clinically used direct methods include single-photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI) with contrast agents, xenon computed tomography (CT), and arterial spin labeling (ASL) MRI. Indirect techniques are based on measuring physiological parameters reflecting cerebral perfusion. The most commonly used indirect methods are near-infrared spectroscopy (NIRS), transcranial Doppler ultrasound (TCD), and phase-contrast MRI. In recent years, few more techniques have been intensively developed, such as diffuse correlation spectroscopy (DCS) and microwave-based techniques, which are still emerging as methods for cerebral circulation monitoring. In addition, methods combining different modalities are discussed and, as a summary, the presented techniques and their benefits for cerebral circulation will be compared

    Wave tomography

    Get PDF

    Ultrasound Tomography for control of Batch Crystallization

    Get PDF
    corecore