4,423 research outputs found

    Nose Heat: Exploring Stress-induced Nasal Thermal Variability through Mobile Thermal Imaging

    Full text link
    Automatically monitoring and quantifying stress-induced thermal dynamic information in real-world settings is an extremely important but challenging problem. In this paper, we explore whether we can use mobile thermal imaging to measure the rich physiological cues of mental stress that can be deduced from a person's nose temperature. To answer this question we build i) a framework for monitoring nasal thermal variable patterns continuously and ii) a novel set of thermal variability metrics to capture a richness of the dynamic information. We evaluated our approach in a series of studies including laboratory-based psychosocial stress-induction tasks and real-world factory settings. We demonstrate our approach has the potential for assessing stress responses beyond controlled laboratory settings

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    Facial Thermal and Blood Perfusion Patterns of Human Emotions: Proof-of-Concept

    Full text link
    In this work, a preliminary study of proof-of-concept was conducted to evaluate the performance of the thermographic and blood perfusion data when emotions of positive and negative valence are applied, where the blood perfusion data are obtained from the thermographic data. The images were obtained for baseline, positive, and negative valence according to the protocol of the Geneva Affective Picture Database. Absolute and percentage differences of average values of the data between the valences and the baseline were calculated for different regions of interest (forehead, periorbital eyes, cheeks, nose and upper lips). For negative valence, a decrease in temperature and blood perfusion was observed in the regions of interest, and the effect was greater on the left side than on the right side. In positive valence, the temperature and blood perfusion increased in some cases, showing a complex pattern. The temperature and perfusion of the nose was reduced for both valences, which is indicative of the arousal dimension. The blood perfusion images were found to be greater contrast; the percentage differences in the blood perfusion images are greater than those obtained in thermographic images. Moreover, the blood perfusion images, and vasomotor answer are consistent, therefore, they can be a better biomarker than thermographic analysis in identifying emotions.Comment: 22 pages, 9 figure

    The role of the cerebellum in unconsciuos and conscious processing of emotions: a review

    Get PDF
    Studies from the past three decades have demonstrated that there is cerebellar involvement in the emotional domain. Emotional processing in humans requires both unconscious and conscious mechanisms. A significant amount of evidence indicates that the cerebellum is one of the cerebral structures that subserve emotional processing, although conflicting data have been reported on its function in unconscious and conscious mechanisms. This review discusses the available clinical, neuroimaging and neurophysiological data on this issue. We also propose a model in which the cerebellum acts as a mediator between the internal state and external environment for the unconscious and conscious levels of emotional processing

    Ubiquitous Technologies for Emotion Recognition

    Get PDF
    Emotions play a very important role in how we think and behave. As such, the emotions we feel every day can compel us to act and influence the decisions and plans we make about our lives. Being able to measure, analyze, and better comprehend how or why our emotions may change is thus of much relevance to understand human behavior and its consequences. Despite the great efforts made in the past in the study of human emotions, it is only now, with the advent of wearable, mobile, and ubiquitous technologies, that we can aim to sense and recognize emotions, continuously and in real time. This book brings together the latest experiences, findings, and developments regarding ubiquitous sensing, modeling, and the recognition of human emotions

    Facilitating the Child–Robot Interaction by Endowing the Robot with the Capability of Understanding the Child Engagement: The Case of Mio Amico Robot

    Get PDF
    AbstractSocial Robots (SRs) are substantially becoming part of modern society, given their frequent use in many areas of application including education, communication, assistance, and entertainment. The main challenge in human–robot interaction is in achieving human-like and affective interaction between the two groups. This study is aimed at endowing SRs with the capability of assessing the emotional state of the interlocutor, by analyzing his/her psychophysiological signals. The methodology is focused on remote evaluations of the subject's peripheral neuro-vegetative activity by means of thermal infrared imaging. The approach was developed and tested for a particularly challenging use case: the interaction between children and a commercial educational robot, Mio Amico Robot, produced by LiscianiGiochi©. The emotional state classified from the thermal signal analysis was compared to the emotional state recognized by a facial action coding system. The proposed approach was reliable and accurate and favored a personalized and improved interaction of children with SRs
    • …
    corecore