220 research outputs found

    Global stabilization of feedforward systems under perturbations in sampling schedule

    Full text link
    For nonlinear systems that are known to be globally asymptotically stabilizable, control over networks introduces a major challenge because of the asynchrony in the transmission schedule. Maintaining global asymptotic stabilization in sampled-data implementations with zero-order hold and with perturbations in the sampling schedule is not achievable in general but we show in this paper that it is achievable for the class of feedforward systems. We develop sampled-data feedback stabilizers which are not approximations of continuous-time designs but are discontinuous feedback laws that are specifically developed for maintaining global asymptotic stabilizability under any sequence of sampling periods that is uniformly bounded by a certain "maximum allowable sampling period".Comment: 27 pages, 5 figures, submitted for possible publication to SIAM Journal Control and Optimization. Second version with added remark

    Intelligent control of nonlinear systems with actuator saturation using neural networks

    Get PDF
    Common actuator nonlinearities such as saturation, deadzone, backlash, and hysteresis are unavoidable in practical industrial control systems, such as computer numerical control (CNC) machines, xy-positioning tables, robot manipulators, overhead crane mechanisms, and more. When the actuator nonlinearities exist in control systems, they may exhibit relatively large steady-state tracking error or even oscillations, cause the closed-loop system instability, and degrade the overall system performance. Proportional-derivative (PD) controller has observed limit cycles if the actuator nonlinearity is not compensated well. The problems are particularly exacerbated when the required accuracy is high, as in micropositioning devices. Due to the non-analytic nature of the actuator nonlinear dynamics and the fact that the exact actuator nonlinear functions, namely operation uncertainty, are unknown, the saturation compensation research is a challenging and important topic with both theoretical and practical significance. Adaptive control can accommodate the system modeling, parametric, and environmental structural uncertainties. With the universal approximating property and learning capability of neural network (NN), it is appealing to develop adaptive NN-based saturation compensation scheme without explicit knowledge of actuator saturation nonlinearity. In this dissertation, intelligent anti-windup saturation compensation schemes in several scenarios of nonlinear systems are investigated. The nonlinear systems studied within this dissertation include the general nonlinear system in Brunovsky canonical form, a second order multi-input multi-output (MIMO) nonlinear system such as a robot manipulator, and an underactuated system-flexible robot system. The abovementioned methods assume the full states information is measurable and completely known. During the NN-based control law development, the imposed actuator saturation is assumed to be unknown and treated as the system input disturbance. The schemes that lead to stability, command following and disturbance rejection is rigorously proved, and verified using the nonlinear system models. On-line NN weights tuning law, the overall closed-loop performance, and the boundedness of the NN weights are rigorously derived and guaranteed based on Lyapunov approach. The NN saturation compensator is inserted into a feedforward path. The simulation conducted indicates that the proposed schemes can effectively compensate for the saturation nonlinearity in the presence of system uncertainty

    Backstepping Control and Transformation of Multi-Input Multi-Output Affine Nonlinear Systems into a Strict Feedback Form

    Get PDF
    This dissertation presents an improved method for controlling multi-input multi-output affine nonlinear systems. A method based on Lie derivatives of the system\u27s outputs is proposed to transform the system into an equivalent strict feedback form. This enables using backstepping control approaches based on Lyapunov stability and integrator backstepping theory to be applied. The geometrical coordinate transformation of multi-input multi-output affine nonlinear systems into strict feedback form has not been detailed in previous publications. In this research, a new approach is presented that extends the transformation process of single-input single-output nonlinear. A general algorithm of the transformation process is formulated. The research will consider square feedback linearizable multi-input multi-output systems where the number of inputs equals to the number of outputs. The preliminary mathematical tools, necessary and sufficient feedback linearizability conditions, as well as a step-by-step transformation process is explained in this research. The approach is applied to the Western Electricity Coordinating Council (WECC) 3-machine nonlinear power system model. Detailed simulation results indicate that the proposed design method is effective in stabilizing the WECC power system when subjected to large disturbances

    Lyapunov-based Control Design For Uncertain Mimo Systems

    Get PDF
    In this dissertation. we document the progress in the control design for a class of MIMO nonlinear uncertain system from five papers. In the first part, we address the problem of adaptive control design for a class of multi-input multi-output (MIMO) nonlinear systems. A Lypaunov based singularity free control law, which compensates for parametric uncertainty in both the drift vector and the input gain matrix, is proposed under the mild assumption that the signs of the leading minors of the control input gain matrix are known. Lyapunov analysis shows global uniform ultimate boundedness (GUUB) result for the tracking error under full state feedback (FSFB). Under the restriction that only the output vector is available for measurement, an output feedback (OFB) controller is designed based on a standard high gain observer (HGO) stability under OFB is fostered by the uniformity of the FSFB solution. Simulation results for both FSFB and OFB controllers demonstrate the efcacy of the MIMO control design in the classical 2-DOF robot manipulator model. In the second part, an adaptive feedback control is designed for a class of MIMO nonlinear systems containing parametric uncertainty in both the drift vector and the input gain matrix, which is assumed to be full-rank and non-symmetric in general. Based on an SDU decomposition of the gain matrix, a singularity-free adaptive tracking control law is proposed that is shown to be globally asymptotically stable (GAS) under full-state feedback. iii Output feedback results are facilitated via the use of a high-gain observer (HGO). Under output feedback control, ultimate boundedness of the error signals is obtained the size of the bound is related to the size of the uncertainty in the parameters. An explicit upper bound is also provided on the size of the HGO gain constant. In third part, a class of aeroelastic systems with an unmodeled nonlinearity and external disturbance is considered. By using leading- and trailing-edge control surface actuations, a full-state feedforward/feedback controller is designed to suppress the aeroelastic vibrations of a nonlinear wing section subject to external disturbance. The full-state feedback control yields a uniformly ultimately bounded result for two-axis vibration suppression. With the restriction that only pitching and plunging displacements are measurable while their rates are not, a high-gain observer is used to modify the full-state feedback control design to an output feedback design. Simulation results demonstrate the ef cacy of the multi-input multioutput control toward suppressing aeroelastic vibration and limit cycle oscillations occurring in pre and post utter velocity regimes when the system is subjected to a variety of external disturbance signals. Comparisons are drawn with a previously designed adaptive multi-input multi-output controller. In the fourth part, a continuous robust feedback control is designed for a class of high-order multi-input multi-output (MIMO) nonlinear systems with two degrees of freedom containing unstructured nonlinear uncertainties in the drift vector and parametric uncertainties in the high frequency gain matrix, which is allowed to be non-symmetric in general. Given some mild assumptions on the system model, a singularity-free continuous robust tracking coniv trol law is designed that is shown to be semi-globally asymptotically stable under full-state feedback through a Lyapunov stability analysis. The performance of the proposed algorithm have been verified on a two-link robot manipulator model and 2-DOF aeroelastic model

    Robust controller design--minimizing peak-to-peak gain

    Get PDF
    Includes bibliographical references (p. 87-92).Supported by Wright Patterson Air Force Base. F33615-90-c-3608Munther A. Dahleh

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    Commande nonlinéaire de micromirroirs[sic] électrostatiques

    Get PDF
    MEMS and their applications -- The micromirror : State-of-the-Art and Applications -- Modeling of torsional electrostatic micromirrors -- Tools for nonlinear control systems design -- Exact Feedback linearization -- Flat systems -- Control synthesis for electrostatic micromirrors -- Experimental implementation -- Instruments Calibration and Components Tuning -- Characteristics of the Micromirrors
    corecore