30 research outputs found

    A rule-based method for scalable and traceable evaluation of system architectures

    Get PDF
    Despite the development of a variety of decision-aid tools for assessing the value of a conceptual design, humans continue to play a dominant role in this process. Researchers have identified two major challenges to automation, namely the subjectivity of value and the existence of multiple and conflicting customer needs. A third challenge is however arising as the amount of data (e.g., expert judgment, requirements, and engineering models) required to assess value increases. This brings two challenges. First, it becomes harder to modify existing knowledge or add new knowledge into the knowledge base. Second, it becomes harder to trace the results provided by the tool back to the design variables and model parameters. Current tools lack the scalability and traceability required to tackle these knowledge-intensive design evaluation problems. This work proposes a traceable and scalable rule-based architecture evaluation tool called VASSAR that is especially tailored to tackle knowledge-intensive problems that can be formulated as configuration design problems, which is demonstrated using the conceptual design task for a laptop. The methodology has three main steps. First, facts containing the capabilities and performance of different architectures are computed using rules containing physical and logical models. Second, capabilities are compared with requirements to assess satisfaction of each requirement. Third, requirement satisfaction is aggregated to yield a manageable number of metrics. An explanation facility keeps track of the value chain all along this process. This paper describes the methodology in detail and discusses in particular different implementations of preference functions as logical rules. A full-scale example around the design of Earth observing satellites is presented

    -ilities Tradespace and Affordability Project – Phase 3

    Get PDF
    One of the key elements of the SERC’s research strategy is transforming the practice of systems engineering and associated management practices – “SE and Management Transformation (SEMT).” The Grand Challenge goal for SEMT is to transform the DoD community’s current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first, document-driven, point- solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise- oriented, hardware-software-human engineered, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046)

    System Qualities Ontology, Tradespace and Affordability (SQOTA) Project – Phase 4

    Get PDF
    This task was proposed and established as a result of a pair of 2012 workshops sponsored by the DoD Engineered Resilient Systems technology priority area and by the SERC. The workshops focused on how best to strengthen DoD’s capabilities in dealing with its systems’ non-functional requirements, often also called system qualities, properties, levels of service, and –ilities. The term –ilities was often used during the workshops, and became the title of the resulting SERC research task: “ilities Tradespace and Affordability Project (iTAP).” As the project progressed, the term “ilities” often became a source of confusion, as in “Do your results include considerations of safety, security, resilience, etc., which don’t have “ility” in their names?” Also, as our ontology, methods, processes, and tools became of interest across the DoD and across international and standards communities, we found that the term “System Qualities” was most often used. As a result, we are changing the name of the project to “System Qualities Ontology, Tradespace, and Affordability (SQOTA).” Some of this year’s university reports still refer to the project as “iTAP.”This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004

    In pursuit of autonomous distributed satellite systems

    Get PDF
    A la pàgina 265 diu: "In an effort to facilitate the reproduction of results, both the source code of the simulation environment and the configuration files that were prepared for the design characterisation are available in an open repository: https://github.com/carlesaraguz/aeossSatellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per satèl·lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanitàries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d’observació de la Terra (OT) estan explorant la idoneïtat dels Sistemes de Satèl·lit Distribuïts (SSD), on múltiples observatoris espacials mesuren el planeta simultàniament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribuïts i, tot i que són possibles gràcies a l’acceptació de les plataformes de satèl·lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d’ells són els pilars principals d’aquesta tesi, en concret, la concepció d’eines de suport a la presa de decisions pel disseny de SSD, i la definició d’operacions autònomes basades en gestió descentralitzada a bord dels satèl·lits. La primera part d’aquesta dissertació es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits satèl·lits amb actius tradicionals. Es presenta un entorn d’optimització orientat al disseny basat en metodologies d’exploració i comparació de solucions. Els objectius d’aquest entorn són: la selecció el disseny de constel·lació més òptim; i facilitar la identificació de tendències de disseny, regions d’incompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d’OT, els requeriments del sistema i l’expressió de prioritats no només s’articulen en quant als atributs funcionals o les restriccions monetàries, sinó també a través de les característiques qualitatives com la flexibilitat, l’evolucionabilitat, la robustesa, o la resiliència, entre d’altres. En línia amb això, l’entorn d’optimització defineix una única figura de mèrit que agrega rendiment, cost i atributs qualitatius. Així l’equip de disseny pot influir en les solucions del procés d’optimització tant en els aspectes quantitatius, com en les característiques dalt nivell. L’aplicació d’aquest entorn d’optimització s’il·lustra en dos casos d’ús actuals identificats en context del projecte europeu ONION: un sistema que mesura paràmetres de l’oceà i gel als pols per millorar la predicció meteorològica i les operacions marines; i un sistema que obté mesures agronòmiques vitals per la gestió global de l’aigua, l’estimació d’estat dels cultius, i la gestió de sequeres. L’anàlisi de propietats arquitecturals ha permès copsar de manera exhaustiva les característiques funcionals i operacionals d’aquests sistemes. Amb això, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l’autonomia. Minimitzar la intervenció de l’operador humà és comú en altres sistemes espacials i podria ser especialment crític pels SSD de gran escala, d’estructura dinàmica i heterogenis. En els SSD s’espera que l’autonomia solucioni la possible incapacitat d’operar sistemes de gran escala de forma centralitzada, que millori el retorn científic i que n’apuntali les seves propietats emergents (e.g. tolerància a errors, adaptabilitat a canvis estructural i de necessitats d’usuari, capacitat de resposta). Es proposa un sistema d’operacions autònomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a través del raonament local, l’assignació individual de recursos, i les interaccions satèl·lit-a-satèl·lit. Al contrari que treballs anteriors, la presa de decisions autònoma s’avalua per constel·lacions que tenen com a objectius de missió la minimització del temps de revisita global.Postprint (published version

    In pursuit of autonomous distributed satellite systems

    Get PDF
    Satellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per satèl·lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanitàries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d’observació de la Terra (OT) estan explorant la idoneïtat dels Sistemes de Satèl·lit Distribuïts (SSD), on múltiples observatoris espacials mesuren el planeta simultàniament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribuïts i, tot i que són possibles gràcies a l’acceptació de les plataformes de satèl·lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d’ells són els pilars principals d’aquesta tesi, en concret, la concepció d’eines de suport a la presa de decisions pel disseny de SSD, i la definició d’operacions autònomes basades en gestió descentralitzada a bord dels satèl·lits. La primera part d’aquesta dissertació es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits satèl·lits amb actius tradicionals. Es presenta un entorn d’optimització orientat al disseny basat en metodologies d’exploració i comparació de solucions. Els objectius d’aquest entorn són: la selecció el disseny de constel·lació més òptim; i facilitar la identificació de tendències de disseny, regions d’incompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d’OT, els requeriments del sistema i l’expressió de prioritats no només s’articulen en quant als atributs funcionals o les restriccions monetàries, sinó també a través de les característiques qualitatives com la flexibilitat, l’evolucionabilitat, la robustesa, o la resiliència, entre d’altres. En línia amb això, l’entorn d’optimització defineix una única figura de mèrit que agrega rendiment, cost i atributs qualitatius. Així l’equip de disseny pot influir en les solucions del procés d’optimització tant en els aspectes quantitatius, com en les característiques dalt nivell. L’aplicació d’aquest entorn d’optimització s’il·lustra en dos casos d’ús actuals identificats en context del projecte europeu ONION: un sistema que mesura paràmetres de l’oceà i gel als pols per millorar la predicció meteorològica i les operacions marines; i un sistema que obté mesures agronòmiques vitals per la gestió global de l’aigua, l’estimació d’estat dels cultius, i la gestió de sequeres. L’anàlisi de propietats arquitecturals ha permès copsar de manera exhaustiva les característiques funcionals i operacionals d’aquests sistemes. Amb això, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l’autonomia. Minimitzar la intervenció de l’operador humà és comú en altres sistemes espacials i podria ser especialment crític pels SSD de gran escala, d’estructura dinàmica i heterogenis. En els SSD s’espera que l’autonomia solucioni la possible incapacitat d’operar sistemes de gran escala de forma centralitzada, que millori el retorn científic i que n’apuntali les seves propietats emergents (e.g. tolerància a errors, adaptabilitat a canvis estructural i de necessitats d’usuari, capacitat de resposta). Es proposa un sistema d’operacions autònomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a través del raonament local, l’assignació individual de recursos, i les interaccions satèl·lit-a-satèl·lit. Al contrari que treballs anteriors, la presa de decisions autònoma s’avalua per constel·lacions que tenen com a objectius de missió la minimització del temps de revisita global

    Multi-attribute tradespace exploration for survivability

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Engineering Systems Division, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 235-249).Survivability is the ability of a system to minimize the impact of a finite-duration disturbance on value delivery (i.e., stakeholder benefit at cost), achieved through (1) the reduction of the likelihood or magnitude of a disturbance, (2) the satisfaction of a minimally acceptable level of value delivery during and after a disturbance, and/or (3) a timely recovery. Traditionally specified as a requirement in military systems, survivability is an increasingly important consideration for all engineering systems given the proliferation of natural and artificial threats. Although survivability is an emergent system property that arises from interactions between a system and its environment, conventional approaches to survivability engineering are reductionist in nature. Furthermore, current methods neither accommodate dynamic threat environments nor facilitate stakeholder communication for conducting trade-offs among system lifecycle cost, mission utility, and operational survivability. Multi-Attribute Tradespace Exploration (MATE) for Survivability is introduced as a system analysis methodology to improve the generation and evaluation of survivable alternatives during conceptual design. MATE for Survivability applies decision theory to the parametric modeling of thousands of design alternatives across representative distributions of disturbance environments. To improve the generation of survivable alternatives, seventeen empirically-validated survivability design principles are introduced. The general set of design principles allows the consideration of structural and behavioral strategies for mitigating the impact of disturbances over the lifecycle of a given encounter.(cont.) To improve the evaluation of survivability, value-based metrics are introduced for the assessment of survivability as a dynamic, continuous, and path-dependent system property. Two of these metrics, time-weighted average utility loss and threshold availability, are used to evaluate survivability based on the relationship between stochastic utility trajectories of system state and stakeholder expectations across nominal and perturbed environments. Finally, the survivability "tear(drop)" tradespace is introduced to enable the identification of inherently survivable architectures that efficiently balance performance metrics of cost, utility, and survivability. The internal validity and prescriptive value of the design principles, metrics, and tradespaces comprising MATE for Survivability are established through applications to the designs of an orbital transfer vehicle and a satellite radar system.by Matthew G. Richards.Ph.D

    Managing uncertainty in systems with a Valuation Approach for Strategic Changeability

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 127-130).Complex engineering systems are frequently exposed to large amounts of uncertainty, as many exogenous, uncontrollable conditions change over time and can affect the performance and value delivery of a system. Engineering practice has begun to address that need, with recent methods frequently targeting such techniques as uncertainty quantification or robust engineering as key goals. While passive robustness is beneficial for these long-lived systems, designing for passive robustness frequently results in sub-optimal point designs, as optimization is forgone in favor of safety. Changeability offers an alternative means for supporting value throughout a system's lifecycle by allowing the system to change in response to, or in anticipation of, the resolution of uncertainty, potentially enabling the system to perform at- or near-optimally in a wide range of contexts. The state of the practice for valuing changeability in engineering systems relies mostly on options theory, which is associated with a number of assumptions that are frequently inappropriate when applied to change options embedded in systems. This has played a part in limiting the inclusion of changeability in fielded systems, as the standard techniques for calculating the benefits of change are often inapplicable and thus are less trusted than valuations of passive robustness. Without the ability to properly and believably value changeability, system designers will continue to look elsewhere for protection against uncertainty. A more generally applicable method for valuing changeability would greatly enhance the understanding and appeal of changeability early in the design process, and allow for the justification of its associated costs. This research has resulted in a new five-step approach, called the Valuation Approach for Strategic Changeability (VASC). VASC was designed to capture the multi-dimensional value of changeability while limiting the number of necessary assumptions by building off of previous research on Epoch-Era Analysis. A suite of new metrics (including Effective Fuzzy Pareto Trace, Fuzzy Pareto Number, and Fuzzy Pareto Shift), capturing different types of valuable changeability information, are included in the approach, which is capable of delivering insight both with and without the computational burden of simulation. The application of VASC to three space system case studies demonstrates the large range of insight about the usage and value of changeability able to be extracted with the approach. Discussion about the strengths and weaknesses of VASC is included, particularly in comparison with Real Options Analysis, and a number of promising avenues for future improvements and extensions to VASC are identified.by Matthew Edward Fitzgerald.S.M

    A METHODOLOGY FOR TECHNOLOGY-TUNED DECISION BEHAVIOR ALGORITHMS FOR TACTICS EXPLORATION

    Get PDF
    In 2016, the USAF found that current development and acquisition methods may be inadequate to achieve air superiority in 2030. The airspace is expected to be highly contested by 2030 due to the Anti-Access/Area Denial strategies being employed by adversaries. Capability gaps must be addressed in order to maintain air superiority. The USAF identified new development and acquisition paradigms as the number one non-material capability development area. The idea of a new development and acquisition paradigm is not new. Such a paradigm shift occurred during the transition from threat-based acquisition during the cold war to capability-based acquisition during the war on terror. Investigation into current US development and acquisition methods found several notional methodologies. Effectiveness-Based Design and Technology Identification, Evaluation, and Selection for Systems-of-Systems have been proposed as notional solutions. Both methodologies seek to evaluate the means – the technologies used to perform a mission – and the ways – the tactics used to complete a mission – of the technology design space. Proper evaluation of the ways would provide critical information to the decision-maker during technology selection. These findings suggest that a new paradigm focused on effectiveness-based acquisition is needed to improve current development and acquisition methods. To evaluate the ways design space, current methods must move away from a fixed or constrained mission model to one that is minimally defined and capable of exploring tactics for each unique technology. The proposed Technology-tuned Decision Behavior Algorithms for Tactics Exploration (Tech-DEBATE) methodology enables the exploration of the ways, or more formally, the mission action design space. The methodology enables further exploration of the technology design space by improving the quantification of mission effectiveness through deep reinforcement learning in a minimally defined mission environment. The data's foundation is based on traceable tactical alternatives that increase the confidence in the measures of effectiveness for each technology-tactic alternative. The methodology enables more informed decisions for technology investment, thereby reducing risks in the development and acquisition of new technologies. The reduction in risk inherently reduces the costs and development time associated with investment in new technologies. The Tech-DEBATE methodology provides a new methodology for technology evaluation through its emphasis on quantifying mission effectiveness in a minimally defined mission to inform technology investment decisions.Ph.D

    Development of a Cognitive Assistant for the Preliminary Design of Spacecrafts

    Get PDF
    The thesis explains the design and development of a cognitive tool to assist humans in the process of designing space missions, specifically individual spacecrafts. The tool is based on a web interface and a rule-based expert system engine to model the spacecraft.Outgoin
    corecore