11,171 research outputs found

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Pushing the limits of inertial motion sensing

    Get PDF

    Recognition of cooking activities through air quality sensor data for supporting food journaling

    Get PDF
    Abstract Unhealthy behaviors regarding nutrition are a global risk for health. Therefore, the healthiness of an individual's nutrition should be monitored in the medium and long term. A powerful tool for monitoring nutrition is a food diary; i.e., a daily list of food taken by the individual, together with portion information. Unfortunately, frail people such as the elderly have a hard time filling food diaries on a continuous basis due to forgetfulness or physical issues. Existing solutions based on mobile apps also require user's effort and are rarely used in the long term, especially by elderly people. For these reasons, in this paper we propose a novel architecture to automatically recognize the preparation of food at home in a privacy-preserving and unobtrusive way, by means of air quality data acquired from a commercial sensor. In particular, we devised statistical features to represent the trend of several air parameters, and a deep neural network for recognizing cooking activities based on those data. We collected a large corpus of annotated sensor data gathered over a period of 8 months from different individuals in different homes, and performed extensive experiments. Moreover, we developed an initial prototype of an interactive system for acquiring food information from the user when a cooking activity is detected by the neural network. To the best of our knowledge, this is the first work that adopts air quality sensor data for cooking activity recognition

    Towards Posture and Gait Evaluation through Wearable-Based Biofeedback Technologies

    Get PDF
    In medicine and sport science, postural evaluation is an essential part of gait and posture correction. There are various instruments for quantifying the postural system’s efficiency and deter- mining postural stability which are considered state-of-the-art. However, such systems present many limitations related to accessibility, economic cost, size, intrusiveness, usability, and time-consuming set-up. To mitigate these limitations, this project aims to verify how wearable devices can be assem- bled and employed to provide feedback to human subjects for gait and posture improvement, which could be applied for sports performance or motor impairment rehabilitation (from neurodegenerative diseases, aging, or injuries). The project is divided into three parts: the first part provides experimen- tal protocols for studying action anticipation and related processes involved in controlling posture and gait based on state-of-the-art instrumentation. The second part provides a biofeedback strategy for these measures concerning the design of a low-cost wearable system. Finally, the third provides al- gorithmic processing of the biofeedback to customize the feedback based on performance conditions, including individual variability. Here, we provide a detailed experimental design that distinguishes significant postural indicators through a conjunct architecture that integrates state-of-the-art postural and gait control instrumentation and a data collection and analysis framework based on low-cost devices and freely accessible machine learning techniques. Preliminary results on 12 subjects showed that the proposed methodology accurately recognized the phases of the defined motor tasks (i.e., rotate, in position, APAs, drop, and recover) with overall F1-scores of 89.6% and 92.4%, respectively, concerning subject-independent and subject-dependent testing setups

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    Exploring human-object interaction through force vector measurement

    Get PDF
    Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2019Cataloged from PDF version of thesis.Includes bibliographical references (pages 101-107).I introduce SCALE, a project aiming to further understand Human-Object Interaction through the real-time analysis of force vector signals, which I have defined as "Force-based Interaction" in this thesis. Force conveys fundamental information in Force-based Interaction, including force intensity, its direction, and object weight - information otherwise difficult to be accessed or inferred from other sensing modalities. To explore the design space of force-based interaction, I have developed the SCALE toolkit, which is composed of modularized 3d-axis force sensors and application APIs. In collaboration with big industry companies, this system has been applied to a variety of application domains and settings, including a retail store, a smart home and a farmers market. In this thesis, I have proposed a base system SCALE, and two additional advanced projects titled KI/OSK and DepthTouch, which build upon the SCALE project.by Takatoshi Yoshida.S.M.S.M. Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Science

    Machine-Learning-Powered Cyber-Physical Systems

    Get PDF
    In the last few years, we witnessed the revolution of the Internet of Things (IoT) paradigm and the consequent growth of Cyber-Physical Systems (CPSs). IoT devices, which include a plethora of smart interconnected sensors, actuators, and microcontrollers, have the ability to sense physical phenomena occurring in an environment and provide copious amounts of heterogeneous data about the functioning of a system. As a consequence, the large amounts of generated data represent an opportunity to adopt artificial intelligence and machine learning techniques that can be used to make informed decisions aimed at the optimization of such systems, thus enabling a variety of services and applications across multiple domains. Machine learning processes and analyses such data to generate a feedback, which represents a status the environment is in. A feedback given to the user in order to make an informed decision is called an open-loop feedback. Thus, an open-loop CPS is characterized by the lack of an actuation directed at improving the system itself. A feedback used by the system itself to actuate a change aimed at optimizing the system itself is called a closed-loop feedback. Thus, a closed-loop CPS pairs feedback based on sensing data with an actuation that impacts the system directly. In this dissertation, we propose several applications in the context of CPS. We propose open-loop CPSs designed for the early prediction, diagnosis, and persistency detection of Bovine Respiratory Disease (BRD) in dairy calves, and for gait activity recognition in horses.These works use sensor data, such as pedometers and automated feeders, to perform valuable real-field data collection. Data are then processed by a mix of state-of-the-art approaches as well as novel techniques, before being fed to machine learning algorithms for classification, which informs the user on the status of their animals. Our work further evaluates a variety of trade-offs. In the context of BRD, we adopt optimization techniques to explore the trade-offs of using sensor data as opposed to manual examination performed by domain experts. Similarly, we carry out an extensive analysis on the cost-accuracy trade-offs, which farmers can adopt to make informed decisions on their barn investments. In the context of horse gait recognition we evaluate the benefits of lighter classifications algorithms to improve energy and storage usage, and their impact on classification accuracy. With respect to closed-loop CPS we proposes an incentive-based demand response approach for Heating Ventilation and Air Conditioning (HVAC) designed for peak load reduction in the context of smart grids. Specifically, our approach uses machine learning to process power data from smart thermostats deployed in user homes, along with their personal temperature preferences. Our machine learning models predict power savings due to thermostat changes, which are then plugged into our optimization problem that uses auction theory coupled with behavioral science. This framework selects the set of users who fulfill the power saving requirement, while minimizing financial incentives paid to the users, and, as a consequence, their discomfort. Our work on BRD has been published on IEEE DCOSS 2022 and Frontiers in Animal Science. Our work on gait recognition has been published on IEEE SMARTCOMP 2019 and Elsevier PMC 2020, and our work on energy management and energy prediction has been published on IEEE PerCom 2022 and IEEE SMARTCOMP 2022. Several other works are under submission when this thesis was written, and are included in this document as well

    Challenges in Annotation of useR Data for UbiquitOUs Systems: Results from the 1st ARDUOUS Workshop

    Full text link
    Labelling user data is a central part of the design and evaluation of pervasive systems that aim to support the user through situation-aware reasoning. It is essential both in designing and training the system to recognise and reason about the situation, either through the definition of a suitable situation model in knowledge-driven applications, or through the preparation of training data for learning tasks in data-driven models. Hence, the quality of annotations can have a significant impact on the performance of the derived systems. Labelling is also vital for validating and quantifying the performance of applications. In particular, comparative evaluations require the production of benchmark datasets based on high-quality and consistent annotations. With pervasive systems relying increasingly on large datasets for designing and testing models of users' activities, the process of data labelling is becoming a major concern for the community. In this work we present a qualitative and quantitative analysis of the challenges associated with annotation of user data and possible strategies towards addressing these challenges. The analysis was based on the data gathered during the 1st International Workshop on Annotation of useR Data for UbiquitOUs Systems (ARDUOUS) and consisted of brainstorming as well as annotation and questionnaire data gathered during the talks, poster session, live annotation session, and discussion session

    A robust and efficient video representation for action recognition

    Get PDF
    This paper introduces a state-of-the-art video representation and applies it to efficient action recognition and detection. We first propose to improve the popular dense trajectory features by explicit camera motion estimation. More specifically, we extract feature point matches between frames using SURF descriptors and dense optical flow. The matches are used to estimate a homography with RANSAC. To improve the robustness of homography estimation, a human detector is employed to remove outlier matches from the human body as human motion is not constrained by the camera. Trajectories consistent with the homography are considered as due to camera motion, and thus removed. We also use the homography to cancel out camera motion from the optical flow. This results in significant improvement on motion-based HOF and MBH descriptors. We further explore the recent Fisher vector as an alternative feature encoding approach to the standard bag-of-words histogram, and consider different ways to include spatial layout information in these encodings. We present a large and varied set of evaluations, considering (i) classification of short basic actions on six datasets, (ii) localization of such actions in feature-length movies, and (iii) large-scale recognition of complex events. We find that our improved trajectory features significantly outperform previous dense trajectories, and that Fisher vectors are superior to bag-of-words encodings for video recognition tasks. In all three tasks, we show substantial improvements over the state-of-the-art results
    • …
    corecore