1,339 research outputs found

    ANTHROPOMORPHIC ROBOTIC ANKLE-FOOT PROSTHESIS WITH ACTIVE DORSIFLEXION- PLANTARFLEXION AND INVERSION-EVERSION

    Get PDF
    The main goal of the research presented in this paper is the development of a powered ankle-foot prosthesis with anthropomorphic characteristics to facilitate turning, walking on irregular grounds, and reducing secondary injuries on bellow knee amputees. The research includes the study of the gait in unimpaired human subjects that includes the kinetics and kinematics of the ankle during different types of gait, in different gait speeds at different turning maneuvers. The development of a robotic ankle-foot prosthesis with two active degrees of freedom (DOF) controlled using admittance and impedance controllers is presented. Also, a novel testing apparatus for estimation of the ankle mechanical impedance in two DOF is presented. The testing apparatus allows the estimation of the time-varying impedance of the human ankle in stance phase during walking in arbitrary directions. The presented work gives insight on the turning mechanisms of the human ankle and how they can be mimicked by the prosthesis to improve the gait and agility of below-knee amputees

    The Functionality Verification through Pilot Human Subject Testing of MyFlex-δ: An ESR Foot Prosthesis with Spherical Ankle Joint

    Get PDF
    Most biomechanical research has focused on level-ground walking giving less attention to other conditions. As a result, most lower limb prosthesis studies have focused on sagittal plane movements. In this paper, an ESR foot is presented, of which five different stiffnesses were optimized for as many weight categories of users. It is characterized by a spherical ankle joint, with which, combined with the elastic elements, the authors wanted to create a prosthesis that gives the desired stiffness in the sagittal plane but at the same time, gives flexibility in the other planes to allow the adaptation of the foot prosthesis to the ground conditions. The ESR foot was preliminarily tested by participants with transfemoral amputation. After a brief familiarization with the device, each participant was asked to wear markers and to walk on a sensorized treadmill to measure their kinematics and kinetics. Then, each participant was asked to leave feedback via an evaluation questionnaire. The measurements and feedback allowed us to evaluate the performance of the prosthesis quantitatively and qualitatively. Although there were no significant improvements on the symmetry of the gait, due also to very limited familiarization time, the participants perceived an improvement brought by the spherical ankle joint

    The Functionality Verification through Pilot Human Subject Testing of MyFlex-δ: An ESR Foot Prosthesis with Spherical Ankle Joint

    Get PDF
    Most biomechanical research has focused on level-ground walking giving less attention to other conditions. As a result, most lower limb prosthesis studies have focused on sagittal plane movements. In this paper, an ESR foot is presented, of which five different stiffnesses were optimized for as many weight categories of users. It is characterized by a spherical ankle joint, with which, combined with the elastic elements, the authors wanted to create a prosthesis that gives the desired stiffness in the sagittal plane but at the same time, gives flexibility in the other planes to allow the adaptation of the foot prosthesis to the ground conditions. The ESR foot was preliminarily tested by participants with transfemoral amputation. After a brief familiarization with the device, each participant was asked to wear markers and to walk on a sensorized treadmill to measure their kinematics and kinetics. Then, each participant was asked to leave feedback via an evaluation questionnaire. The measurements and feedback allowed us to evaluate the performance of the prosthesis quantitatively and qualitatively. Although there were no significant improvements on the symmetry of the gait, due also to very limited familiarization time, the participants perceived an improvement brought by the spherical ankle joint

    Study of composite elastic elements for transfemoral prostheses: the MyLeg Project

    Get PDF
    In this thesis, the work on the design and realization of a semi-active foot prosthesis with variable stiffness system is presented. The final prosthesis was the result of a path started by the design of the elastic composite elements of an ESR prosthesis, a passive prosthetic device, generally prescribed to amputees with K3 and K4 of level of ambulation. The design of both the ESR prosthesis and the final variable stiffness prosthesis was carried out using a new systematic methodology of prosthesis design. This methodology has been developed and then presented in the same thesis by the author. Modelling and simulation techniques are illustrated step by step. With the variable stiffness prosthesis, the aim is to allow future users to perform more daily activities without being restricted by the conditions of the ground. It has been chosen to develop a semi-active prosthesis rather than a bionic foot for two main reasons: a bionic foot may be too expensive for most future users; and a bionic foot may be undesirable for too much weight; the much weight can be due to the motor and batteries, in addition to the structure that will certainly be much more complex than the structure of a semi-active prosthesis. To investigate the effectiveness of the variable stiffness, human subjects with amputees will be carried out

    ESTIMATION AND PREDICTION OF THE HUMAN GAIT DYNAMICS FOR THE CONTROL OF AN ANKLE-FOOT PROSTHESIS

    Get PDF
    With the growing population of amputees, powered prostheses can be a solution to improve the quality of life for many people. Powered ankle-foot prostheses can be made to behave similar to the lost limb via controllers that emulate the mechanical impedance of the human ankle. Therefore, the understanding of human ankle dynamics is of major significance. First, this work reports the modulation of the mechanical impedance via two mechanisms: the co-contraction of the calf muscles and a change of mean ankle torque and angle. Then, the mechanical impedance of the ankle was determined, for the first time, as a multivariable and time-varying system. These findings reveal the importance of recognizing the state of the user during the gait when the user interacts with the environment. In addition to studying the ankle impedance, a wearable device was designed and evaluated to further the studies on robotic perception for ankle-foot prostheses. This device is capable of characterizing the ground environment and estimating the gait state using visual-inertial sensors. Finally, this study contributes to the field of ankle-foot prostheses by identifying the mechanical behavior of the human ankle and developing a platform to test perception algorithms for the control of robotic prostheses

    Simulation of Human Ankle Trajectory during Stance Phase of Gait

    Get PDF
    A simulation was developed which mimics the human gait characteristics based on the input of an individual’s gait trajectory. This simulation also estimates the impedance of the human ankle based on the ground reaction forces measured by the force plate. This simulation will accept alterations of the following parameters: total body weight, weight of the shank, weight of the foot, trajectories of the shank and foot of the individual and orientation of the force plate, which would generate a new gait trajectory for the ankle during the stance phase of gait. The goal of this simulation was to validate the protocols followed during experiments conducted on human participants to estimate the impedance of the ankle. It also allowed us to understand and explore different system identification methods. The gait data of two individuals measured experimentally was used to build this simulation model. The simulation implements proportional-integral-derivative (PID) control and impedance control to regenerate the ankle trajectories with time-varying impedance of the ankle joint. This model was tested using the trajectories of the shank and foot from two additional individuals and replicated experimentally obtained ankle trajectories of these individuals, with a mean relative error of 0.53±0.3%, 5.74±4.85% and 4.94±3.13%, in ankle translational trajectory and ankle angular trajectories in dorsi-plantarflexion and inversion-eversion respectively

    Foot/Ankle Prostheses Design Approach Based on Scientometric and Patentometric Analyses

    Get PDF
    There are different alternatives when selecting removable prostheses for below the knee amputated patients. The designs of these prostheses vary according to their different functions. These prostheses designs can be classified into Energy Storing and Return (ESAR), Controlled Energy Storing and Return (CESR), active, and hybrid. This paper aims to identify the state of the art related to the design of these prostheses of which ESAR prostheses are grouped into five types, and active and CESR are categorized into four groups. Regarding patent analysis, 324 were analyzed over the last six years. For scientific communications, a bibliometric analysis was performed using 104 scientific reports from the Web of Science in the same period. The results show a tendency of ESAR prostheses designs for patents (68%) and active prostheses designs for scientific documentation (40%).Beca Conacyt Doctorad

    Passive Prosthetic Ankle Design Based on Indonesian Anthropometry

    Get PDF
    Foot prosthesis is a replacement for the foot to overcome activity limitations due to disease, birth defects, accidents or amputations. Many foot prosthetics have been developed in recent years to treat patients. However, prostheses on the market today have drawbacks, including their high price, lack of comfort, stiff ankles, and low durability. The main objective of this study is to develop an existing ankle-foot prosthesis design that approximates the resemblance of a human foot according to the anthropometry of Asians, especially Indonesians. This study contains the design of a prosthetic foot with a skin design model and a support core. The prosthetic core supports the use of a compliance mechanism (CM) model that functions to connect the limb organs that have been amputated. The design process is carried out using the Solidwork software. Ankle foot prostheses are designed to be able to withstand a load of 100 kg and can be used for patients with a height range of 150 cm to 180 cm. Based on the design results, it is found that the prosthesis mass is lower than the lowest mass of the user, so it feels light, ergonomic and flexible when used
    corecore