741 research outputs found

    Preliminary Deep Water Results in Single-Beacon One-Way-Travel-Time Acoustic Navigation for Underwater Vehicles

    Full text link
    This paper reports the development and experimental evaluation of a novel navigation system for underwater vehicles that employs Doppler sonar, synchronous clocks, and acoustic modems to achieve simultaneous acoustic communication and navigation. The system reported herein, which is employed to renavigate the vehicle in post-processing, forms the basis for a vehicle-based real-time navigation system. Existing high-precision absolute navigation techniques for underwater vehicles are impractical over long length scales and lack scalability for simultaneously navigating multiple vehicles. The navigation method reported in this paper relies on a single moving reference beacon, eliminating the requirement for the underwater vehicle to remain in a bounded navigable area. The use of underwater modems and synchronous clocks enables range measurements based on one-way time-of-flight information from acoustic data packet broadcasts. The acoustic data packets are broadcast from the single, moving reference beacon and can be received simultaneously by multiple vehicles within acoustic range. We report experimental results from the first deep-water evaluation of this method using data collected from an autonomous underwater vehicle (AUV) survey carried out in 4000 m of water on the southern Mid-Atlantic Ridge. We report a comparative experimental evaluation of the navigation fixes provided by the proposed synchronous acoustic navigation system in comparison to navigation fixes obtained by an independent conventional long baseline acoustic navigation system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86040/1/swebster-7.pd

    Low cost underwater acoustic localization

    Full text link
    Over the course of the last decade, the cost of marine robotic platforms has significantly decreased. In part this has lowered the barriers to entry of exploring and monitoring larger areas of the earth's oceans. However, these advances have been mostly focused on autonomous surface vehicles (ASVs) or shallow water autonomous underwater vehicles (AUVs). One of the main drivers for high cost in the deep water domain is the challenge of localizing such vehicles using acoustics. A low cost one-way travel time underwater ranging system is proposed to assist in localizing deep water submersibles. The system consists of location aware anchor buoys at the surface and underwater nodes. This paper presents a comparison of methods together with details on the physical implementation to allow its integration into a deep sea micro AUV currently in development. Additional simulation results show error reductions by a factor of three.Comment: 73rd Meeting of the Acoustical Society of Americ

    Advances in Decentralized Single-Beacon Acoustic Navigation for Underwater Vehicles: Theory and Simulation

    Full text link
    This paper reports the theory and implementation of a decentralized navigation system that enables simultaneous single-beacon navigation of multiple underwater vehicles. In single-beacon navigation, each vehicle uses ranges from a single, moving reference beacon in addition to its own inertial navigation sensors to perform absolute localization and navigation. In this implementation the vehicles perform simultaneous communication and navigation using underwater acoustic modems, encoding and decoding data within the acoustic broadcast. Vehicles calculate range from the time of flight of asynchronous acoustic broadcasts from the reference beacon. Synchronous clocks on the reference beacon and the vehicles enable the measurement of one-way travel-times, whereby the time of launch of the acoustic signal at the reference beacon is encoded in the acoustic broadcast and the time of arrival of the broadcast is measured by each vehicle. The decentralized navigation algorithm, running independently on each vehicle, is implemented using the information form of the extended Kalman filter and has been previously shown to yield results that are identical to a centralized Kalman filter at the instant of each range measurement. We summarize herein the architecture and design of the acoustic communications (Acomms) system consisting of an underwater acoustic modem, synchronous clock, and the software necessary to run them, and salient results from the validation of the decentralized information filter using a simulated data set.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86057/1/swebster-4.pd

    Toward a Platform-Independent Acoustic Communications and Navigation System for Underwater Vehicles

    Full text link
    This paper presents a platform-independent acoustic communication (Acomms) system that enables multiple nodes (any combination of underwater vehicles, surface ships, and fixed beacons) to simultaneously exchange data and calculate inter-node ranges with O(1m) accuracy. The Acomms system supports two types of communications: standard asynchronous acoustic communication and synchronous communication, which enables navigation based on inter-node ranges derived from the one-way travel-times of acoustic messages between nodes. The Acomms system hardware is implemented with a dedicated software program, Linux host computers, Woods Hole Oceanographic Institution (WHOI) Micro-Modems, and precision reference clocks. The acoustic communications software configures the modem, manages all acoustic communication traffic, and acts as an interface between the vehicle-specific software and the modems and clocks. The software and related hardware have been installed on theWoods Hole Oceanographic Institution vehicles Puma, Jaguar, and Nereus, and deployed in sea trials in the North Pacific and South Atlantic.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86048/1/swebster-8.pd

    Synchronous-Clock, One-Way-Travel-Time Acoustic Navigation for Underwater Vehicles

    Full text link
    This paper reports the development and deployment of a synchronous-clock acoustic navigation system suitable for the simultaneous navigation of multiple underwater vehicles. Our navigation system is composed of an acoustic modem–based communication and navigation system that allows for onboard navigational data to be broadcast as a data packet by a source node and for all passively receiving nodes to be able to decode the data packet to obtain a one-way-travel-time (OWTT) pseudo-range measurement and navigational ephemeris data. The navigation method reported herein uses a surface ship acting as a single moving reference beacon to a fleet of passively listening underwater vehicles. All vehicles within acoustic range are able to concurrently measure their slant range to the reference beacon using the OWTT measurement methodology and additionally receive transmission of reference beacon position using the modem data packet. The advantages of this type of navigation system are that it can (i) concurrently navigate multiple underwater vehicles within the vicinity of the surface ship and (ii) provide a bounded-error XY position measure that is commensurate with conventional moored long-baseline (LBL) navigation systems [i.e., ] but unlike LBL is not geographically restricted to a fixed-beacon network. We present results for two different field experiments using a two-node configuration consisting of a global positioning system–equipped surface ship acting as a global navigation aid to a Doppler-aided autonomous underwater vehicle. In each experiment, vehicle position was independently corroborated by other standard navigation means. Results for a maximum likelihood sensor fusion framework are reported.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86046/1/reustice-2.pd

    Optimal path shape for range-only underwater target localization using a Wave Glider

    Get PDF
    Underwater localization using acoustic signals is one of the main components in a navigation system for an autonomous underwater vehicle (AUV) as a more accurate alternative to dead-reckoning techniques. Although different methods based on the idea of multiple beacons have been studied, other approaches use only one beacon, which reduces the system’s costs and deployment complexity. The inverse approach for single-beacon navigation is to use this method for target localization by an underwater or surface vehicle. In this paper, a method of range-only target localization using a Wave Glider is presented, for which simulations and sea tests have been conducted to determine optimal parameters to minimize acoustic energy use and search time, and to maximize location accuracy and precision. Finally, a field mission is presented, where a Benthic Rover (an autonomous seafloor vehicle) is localized and tracked using minimal human intervention. This mission shows, as an example, the power of using autonomous vehicles in collaboration for oceanographic research.Peer ReviewedPostprint (author's final draft

    Contributions to automated realtime underwater navigation

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2012This dissertation presents three separate–but related–contributions to the art of underwater navigation. These methods may be used in postprocessing with a human in the loop, but the overarching goal is to enhance vehicle autonomy, so the emphasis is on automated approaches that can be used in realtime. The three research threads are: i) in situ navigation sensor alignment, ii) dead reckoning through the water column, and iii) model-driven delayed measurement fusion. Contributions to each of these areas have been demonstrated in simulation, with laboratory data, or in the field–some have been demonstrated in all three arenas. The solution to the in situ navigation sensor alignment problem is an asymptotically stable adaptive identifier formulated using rotors in Geometric Algebra. This identifier is applied to precisely estimate the unknown alignment between a gyrocompass and Doppler velocity log, with the goal of improving realtime dead reckoning navigation. Laboratory and field results show the identifier performs comparably to previously reported methods using rotation matrices, providing an alignment estimate that reduces the position residuals between dead reckoning and an external acoustic positioning system. The Geometric Algebra formulation also encourages a straightforward interpretation of the identifier as a proportional feedback regulator on the observable output error. Future applications of the identifier may include alignment between inertial, visual, and acoustic sensors. The ability to link the Global Positioning System at the surface to precision dead reckoning near the seafloor might enable new kinds of missions for autonomous underwater vehicles. This research introduces a method for dead reckoning through the water column using water current profile data collected by an onboard acoustic Doppler current profiler. Overlapping relative current profiles provide information to simultaneously estimate the vehicle velocity and local ocean current–the vehicle velocity is then integrated to estimate position. The method is applied to field data using online bin average, weighted least squares, and recursive least squares implementations. This demonstrates an autonomous navigation link between the surface and the seafloor without any dependence on a ship or external acoustic tracking systems. Finally, in many state estimation applications, delayed measurements present an interesting challenge. Underwater navigation is a particularly compelling case because of the relatively long delays inherent in all available position measurements. This research develops a flexible, model-driven approach to delayed measurement fusion in realtime Kalman filters. Using a priori estimates of delayed measurements as augmented states minimizes the computational cost of the delay treatment. Managing the augmented states with time-varying conditional process and measurement models ensures the approach works within the proven Kalman filter framework–without altering the filter structure or requiring any ad-hoc adjustments. The end result is a mathematically principled treatment of the delay that leads to more consistent estimates with lower error and uncertainty. Field results from dead reckoning aided by acoustic positioning systems demonstrate the applicability of this approach to real-world problems in underwater navigation.I have been financially supported by: the National Defense Science and Engineering Graduate (NDSEG) Fellowship administered by the American Society for Engineering Education, the Edwin A. Link Foundation Ocean Engineering and Instrumentation Fellowship, and WHOI Academic Programs office

    Synchronous-clock range-angle relative acoustic navigation: a unified approach to multi-AUV localization, command, control, and coordination

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rypkema, N., Schmidt, H., & Fischell, E. Synchronous-clock range-angle relative acoustic navigation: a unified approach to multi-AUV localization, command, control, and coordination. Journal of Field Robotics, 2(1), (2022): 774–806, https://doi.org/10.55417/fr.2022026.This paper presents a scalable acoustic navigation approach for the unified command, control, and coordination of multiple autonomous underwater vehicles (AUVs). Existing multi-AUV operations typically achieve coordination manually by programming individual vehicles on the surface via radio communications, which becomes impractical with large vehicle numbers; or they require bi-directional intervehicle acoustic communications to achieve limited coordination when submerged, with limited scalability due to the physical properties of the acoustic channel. Our approach utilizes a single, periodically broadcasting beacon acting as a navigation reference for the group of AUVs, each of which carries a chip-scale atomic clock and fixed ultrashort baseline array of acoustic receivers. One-way travel-time from synchronized clocks and time-delays between signals received by each array element allow any number of vehicles within receive distance to determine range, angle, and thus determine their relative position to the beacon. The operator can command different vehicle behaviors by selecting between broadcast signals from a predetermined set, while coordination between AUVs is achieved without intervehicle communication by defining individual vehicle behaviors within the context of the group. Vehicle behaviors are designed within a beacon-centric moving frame of reference, allowing the operator to control the absolute position of the AUV group by repositioning the navigation beacon to survey the area of interest. Multiple deployments with a fleet of three miniature, low-cost SandShark AUVs performing closed-loop acoustic navigation in real-time provide experimental results validated against a secondary long-baseline positioning system, demonstrating the capabilities and robustness of our approach with real-world data.This work was partially supported by the Office of Naval Research, the Defense Advanced Research Projects Agency, Lincoln Laboratory, and the Reuben F. and Elizabeth B. Richards Endowed Funds at WHOI

    An acoustic navigation system

    Get PDF
    This report describes a system for underwater acoustic navigation developed, and in use, at the Woods Hole Oceanographic Institution. It includes a brief discussion of the electronic components, operation, mathematical analysis, and available computer programs. There is a series of supplementary Technical Memoranda containing more information on various aspects of the system. We believe that this kind of documentation is more flexible and better meets the needs of potential users than including all technical details in one large volume. These are not final or definitive reports; acoustic navigation capabilities will continue to evolve at W.H.O.I. for some time. Acoustic navigation provides a method of tracking a ship, and an underwater vehicle or instrument package (‘fish’), in the deep ocean. Acoustic devices attached to the ship and fish measure the length of time it takes a sound pulse to travel to acoustic transponders moored on the ocean floor. If the transponder positions and the average speed of sound are known, the ship or fish position can be found.Prepared for the Office of Naval Research under Contracts N00014-71-C0284; NR 293-008 N00014-70-C0205; NR 263-103 and the National Science Foundation/International Decade of Ocean Exploration Grant GX-36024 and the Applied Physics Laboratory of The Johns Hopkins University Contract 372111

    Cooperative AUV Navigation using a Single Maneuvering Surface Craft

    Get PDF
    In this paper we describe the experimental implementation of an online algorithm for cooperative localization of submerged autonomous underwater vehicles (AUVs) supported by an autonomous surface craft. Maintaining accurate localization of an AUV is difficult because electronic signals, such as GPS, are highly attenuated by water. The usual solution to the problem is to utilize expensive navigation sensors to slow the rate of dead-reckoning divergence. We investigate an alternative approach that utilizes the position information of a surface vehicle to bound the error and uncertainty of the on-board position estimates of a low-cost AUV. This approach uses the Woods Hole Oceanographic Institution (WHOI) acoustic modem to exchange vehicle location estimates while simultaneously estimating inter-vehicle range. A study of the system observability is presented so as to motivate both the choice of filtering approach and surface vehicle path planning. The first contribution of this paper is to the presentation of an experiment in which an extended Kalman filter (EKF) implementation of the concept ran online on-board an OceanServer Iver2 AUV while supported by an autonomous surface vehicle moving adaptively. The second contribution of this paper is to provide a quantitative performance comparison of three estimators: particle filtering (PF), non-linear least-squares optimization (NLS), and the EKF for a mission using three autonomous surface craft (two operating in the AUV role). Our results indicate that the PF and NLS estimators outperform the EKF, with NLS providing the best performance.United States. Office of Naval Research (Grant N000140711102)United States. Office of Naval Research. Multidisciplinary University Research InitiativeSingapore. National Research FoundationSingapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Monitorin
    • …
    corecore