511 research outputs found

    Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms

    Get PDF
    Altres ajuts: C.P. is a recipient of a FI-DGR scholarship grant (2016B_00410). X.P. is a recipient of an ICREA Academia Excellence in Research Grant ().This work is aimed at the environmental remote sensing community that uses UAV optical frame imagery in combination with airborne and satellite data. Taking into account the economic costs involved and the time investment, we evaluated the fit-for-purpose accuracy of four positioning methods of UAV-acquired imagery: 1) direct georeferencing using the onboard raw GNSS (GNSSNAV) data, 2) direct georeferencing using Post-Processed Kinematic single-frequency carrier-phase without in situ ground support (PPK1), 3) direct georeferencing using Post-Processed Kinematic double-frequency carrier-phase GNSS data with in situ ground support (PPK2), and 4) indirect georeferencing using Ground Control Points (GCP). We tested a multispectral sensor and an RGB sensor, onboard multicopter platforms. Orthophotomosaics at <0.05 m spatial resolution were generated with photogrammetric software. The UAV image absolute accuracy was evaluated according to the ASPRS standards, wherein we used a set of GCPs as reference coordinates, which we surveyed with a differential GNSS static receiver. The raw onboard GNSSNAV solution yielded horizontal (radial) accuracies of RMSEr≤1.062 m and vertical accuracies of RMSEz≤4.209 m; PPK1 solution gave decimetric accuracies of RMSEr≤0.256 m and RMSEz≤0.238 m; PPK2 solution, gave centimetric accuracies of RMSEr≤0.036 m and RMSEz≤0.036 m. These results were further improved by using the GCP solution, which yielded accuracies of RMSEr≤0.023 m and RMSEz≤0.030 m. GNSSNAV solution is a fast and low-cost option that is useful for UAV imagery in combination with remote sensing products, such as Sentinel-2 satellite data. PPK1, which can register UAV imagery with remote sensing products up to 0.25 m pixel size, as WorldView-like satellite imagery, airborne lidar or orthoimagery, has a higher economic cost than the GNSSNAV solution. PPK2 is an acceptable option for registering remote sensing products of up to 0.05 m pixel size, as with other UAV images. Moreover, PPK2 can obtain accuracies that are approximate to the usual UAV pixel size (e.g. co-register in multitemporal studies), but it is more expensive than PPK1. Although indirect georeferencing can obtain the highest accuracy, it is nevertheless a time-consuming task, particularly if many GCPs have to be placed. The paper also provides the approximate cost of each solution

    Unmanned aerial vehicle to estimate nitrogen status of turfgrasses

    Get PDF
    Spectral reflectance data originating from Unmanned Aerial Vehicle (UAV) imagery is a valuable tool to monitor plant nutrition, reduce nitrogen (N) application to real needs, thus producing both economic and environmental benefits. The objectives of the trial were i) to compare the spectral reflectance of 3 turfgrasses acquired via UAV and by a ground-based instrument; ii) to test the sensitivity of the 2 data acquisition sources in detecting induced variation in N levels. N application gradients from 0 to 250 kg ha-1 were created on 3 different turfgrass species: Cynodon dactylon x transvaalensis (Cdxt) Patriot, Zoysia matrella (Zm) Zeon and Paspalum vaginatum (Pv) Salam. Proximity and remote-sensed reflectance measurements were acquired using a GreenSeeker handheld crop sensor and a UAV with onboard a multispectral sensor, to determine Normalized Difference Vegetation Index (NDVI). Proximity-sensed NDVI is highly correlated with data acquired from UAV with r values ranging from 0.83 (Zm) to 0.97 (Cdxt). Relating NDVI-UAV with clippings N, the highest r is for Cdxt (0.95). The most reactive species to N fertilization is Cdxt with a clippings N% ranging from 1.2% to 4.1%. UAV imagery can adequately assess the N status of turfgrasses and its spatial variability within a species, so for large areas, such as golf courses, sod farms or race courses, UAV acquired data can optimize turf management. For relatively small green areas, a hand-held crop sensor can be a less expensive and more practical option

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    DEVELOPMENT OF AN UNMANNED AERIAL VEHICLE FOR LOW-COST REMOTE SENSING AND AERIAL PHOTOGRAPHY

    Get PDF
    The paper describes major features of an unmanned aerial vehicle, designed undersafety and performance requirements for missions of aerial photography and remotesensing in precision agriculture. Unmanned aerial vehicles have vast potential asobservation and data gathering platforms for a wide variety of applications. The goalof the project was to develop a small, low cost, electrically powered, unmanned aerialvehicle designed in conjunction with a payload of imaging equipment to obtainremote sensing images of agricultural fields. The results indicate that this conceptwas feasible in obtaining high quality aerial images

    Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery

    Get PDF
    Altres ajuts: Joan-Cristian Padró is a recipient of the FI-DGR scholarship grant (2016B_00410). Xavier Pons is a recipient of the ICREA Academia Excellence in Research Grant (2016-2020).Open-pit mine is still an unavoidable activity but can become unsustainable without the restoration of degraded sites. Monitoring the restoration after extractive activities is a legal requirement for mine companies and public administrations in many countries, involving financial provisions for environmental liabilities. The objective of this contribution is to present a rigorous, low-cost and easy-to-use application of Unmanned Aerial Systems (UAS) for supporting opencast mining and restoration monitoring, complementing the inspections with very high (<10 cm) spatial resolution multispectral imagery, and improving any restoration documentation with detailed land cover maps. The potential of UAS as a tool to control restoration works is presented in a calcareous quarry that has undergone different post-mining restoration actions in the last 20 years, representing 4 reclaimed stages. We used a small (<2 kg) drone equipped with a multispectral sensor, along with field spectroradiometer measurements that were used to radiometrically correct the UAS sensor data. Imagery was processed with photogrammetric and Remote Sensing and Geographical Information Systems software, resulting in spectral information, vegetation and soil indices, structural information and land cover maps. Spectral data and land cover classification, which were validated through ground-truth plots, aided in the detection and quantification of mine waste dumping, bare soil and other land cover extension. Moreover, plant formations and vegetation development were evaluated, allowing a quantitative, but at the same time visual and intuitive comparison with the surrounding reference systems. The protocol resulting from this research constitutes a pipeline solution intended for the implementation by public administrations and privates companies for precisely evaluating restoration dynamics in an expedient manner at a very affordable budget. Furthermore, the proposed solution prevents subjective interpretations by providing objective data, which integrate new technologies at the service of scientists, environmental managers and decision makers

    An Unmanned Lighter-Than-Air Platform for Large Scale Land Monitoring

    Get PDF
    The concept and preliminary design of an unmanned lighter-than-air (LTA) platform instrumented with different remote sensing technologies is presented. The aim is to assess the feasibility of using a remotely controlled airship for the land monitoring of medium sized (up to 107 m2) urban or rural areas at relatively low altitudes (below 1000 m) and its potential convenience with respect to other standard remote and in-situ sensing systems. The proposal includes equipment for high-definition visual, thermal, and hyperspectral imaging as well as LiDAR scanning. The data collected from these different sources can be then combined to obtain geo-referenced products such as land use land cover (LULC), soil water content (SWC), land surface temperature (LSC), and leaf area index (LAI) maps, among others. The potential uses for diffuse structural health monitoring over built-up areas are discussed as well. Several mission typologies are considere

    Integration, Testing, And Analysis Of Multispectral Imager On Small Unmanned Aerial System For Skin Detection

    Get PDF
    Small Unmanned Aerial Systems (SUAS) have been utilized by the military, geological researchers, and first responders, to provide information about the environment in real time. Hyperspectral Imagery (HSI) provides high resolution data in the spatial and spectral dimension; all objects, including skin have unique spectral signatures. However, little research has been done to integrate HSI into SUAS due to their cost and form factor. Multispectral Imagery (MSI) has proven capable of dismount detection with several distinct wavelengths. This research proposes a spectral imaging system that can detect dismounts on SUAS. Also, factors that pertain to accurate dismount detection with an SUAS are explored. Dismount skin detection from an aerial platform also has an inherent difficulty compared to ground-based platforms. Computer vision registration, stereo camera calibration, and geolocation from autopilot telemetry are utilized to design a dismount detection platform with the Systems Engineering methodology. An average 5.112% difference in ROC AUC values that compared a line scan spectral imager to the prototype area scan imager was recorded. Results indicated that an SUAS-based Spectral Imagers are capable tools in dismount detection protocols. Deficiencies associated with the test expedient prototype are discussed and recommendations for further improvements are provided

    Feasibility study of a multispectral camera with automatic processing onboard a 27U satellite using Model Based Space System Engineering

    Get PDF
    The paper discusses an experience in using SysML and the TTool software for the feasibility study of a novel multispectral camera for agricultural monitoring. Innovation lies in both automatic image processing onboard and mission control capabilities designed to comply with a 27U microsatellite. In addition to the mission accomplishment control, this innovative payload is capable of sending processed data directly to farms, critically reducing the delay between image making and its use in the field. This paper shows how MBSE and SysML may comply with phases 0 and A of a space project
    • …
    corecore