13 research outputs found

    Unsupervised learning of overlapping image components using divisive input modulation

    Get PDF
    This paper demonstrates that nonnegative matrix factorisation is mathematically related to a class of neural networks that employ negative feedback as a mechanism of competition. This observation inspires a novel learning algorithm which we call Divisive Input Modulation (DIM). The proposed algorithm provides a mathematically simple and computationally efficient method for the unsupervised learning of image components, even in conditions where these elementary features overlap considerably. To test the proposed algorithm, a novel artificial task is introduced which is similar to the frequently-used bars problem but employs squares rather than bars to increase the degree of overlap between components. Using this task, we investigate how the proposed method performs on the parsing of artificial images composed of overlapping features, given the correct representation of the individual components; and secondly, we investigate how well it can learn the elementary components from artificial training images. We compare the performance of the proposed algorithm with its predecessors including variations on these algorithms that have produced state-of-the-art performance on the bars problem. The proposed algorithm is more successful than its predecessors in dealing with overlap and occlusion in the artificial task that has been used to assess performance

    Learning viewpoint invariant perceptual representations from cluttered images

    Get PDF
    In order to perform object recognition, it is necessary to form perceptual representations that are sufficiently specific to distinguish between objects, but that are also sufficiently flexible to generalize across changes in location, rotation, and scale. A standard method for learning perceptual representations that are invariant to viewpoint is to form temporal associations across image sequences showing object transformations. However, this method requires that individual stimuli be presented in isolation and is therefore unlikely to succeed in real-world applications where multiple objects can co-occur in the visual input. This paper proposes a simple modification to the learning method that can overcome this limitation and results in more robust learning of invariant representations

    Presynaptic Inhibition in the Striatum of the Basal Ganglia Improves Pattern Classification and Thus Promotes Superior Goal Selection

    Get PDF
    This review article takes a multidisciplinary approach to understand how presynaptic inhibition in the striatum of the basal ganglia (BG) contributes to pattern classification and the selection of goals that control behavior. It is a difficult problem both because it is multidimensional and because it is has complex system dynamics. We focus on the striatum because, as the main site for input to the BG, it gets to decide what goals are important to consider

    A model of non-linear interactions between cortical top-down and horizontal connections explains the attentional gating of collinear facilitation

    Get PDF
    AbstractPast physiological and psychophysical experiments have shown that attention can modulate the effects of contextual information appearing outside the classical receptive field of a cortical neuron. Specifically, it has been suggested that attention, operating via cortical feedback connections, gates the effects of long-range horizontal connections underlying collinear facilitation in cortical area V1. This article proposes a novel mechanism, based on the computations performed within the dendrites of cortical pyramidal cells, that can account for these observations. Furthermore, it is shown that the top-down gating signal into V1 can result from a process of biased competition occurring in extrastriate cortex. A model based on these two assumptions is used to replicate the results of physiological and psychophysical experiments on collinear facilitation and attentional modulation

    Are v1 simple cells optimized for visual occlusions? : A comparative study

    Get PDF
    Abstract: Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. Author Summary: The statistics of our visual world is dominated by occlusions. Almost every image processed by our brain consists of mutually occluding objects, animals and plants. Our visual cortex is optimized through evolution and throughout our lifespan for such stimuli. Yet, the standard computational models of primary visual processing do not consider occlusions. In this study, we ask what effects visual occlusions may have on predicted response properties of simple cells which are the first cortical processing units for images. Our results suggest that recently observed differences between experiments and predictions of the standard simple cell models can be attributed to occlusions. The most significant consequence of occlusions is the prediction of many cells sensitive to center-surround stimuli. Experimentally, large quantities of such cells are observed since new techniques (reverse correlation) are used. Without occlusions, they are only obtained for specific settings and none of the seminal studies (sparse coding, ICA) predicted such fields. In contrast, the new type of response naturally emerges as soon as occlusions are considered. In comparison with recent in vivo experiments we find that occlusive models are consistent with the high percentages of center-surround simple cells observed in macaque monkeys, ferrets and mice

    Über die Selbstorganisation einer hierarchischen Gedächtnisstruktur für kompositionelle Objektrepräsentation im visuellen Kortex

    Get PDF
    At present, there is a huge lag between the artificial and the biological information processing systems in terms of their capability to learn. This lag could be certainly reduced by gaining more insight into the higher functions of the brain like learning and memory. For instance, primate visual cortex is thought to provide the long-term memory for the visual objects acquired by experience. The visual cortex handles effortlessly arbitrary complex objects by decomposing them rapidly into constituent components of much lower complexity along hierarchically organized visual pathways. How this processing architecture self-organizes into a memory domain that employs such compositional object representation by learning from experience remains to a large extent a riddle. The study presented here approaches this question by proposing a functional model of a self-organizing hierarchical memory network. The model is based on hypothetical neuronal mechanisms involved in cortical processing and adaptation. The network architecture comprises two consecutive layers of distributed, recurrently interconnected modules. Each module is identified with a localized cortical cluster of fine-scale excitatory subnetworks. A single module performs competitive unsupervised learning on the incoming afferent signals to form a suitable representation of the locally accessible input space. The network employs an operating scheme where ongoing processing is made of discrete successive fragments termed decision cycles, presumably identifiable with the fast gamma rhythms observed in the cortex. The cycles are synchronized across the distributed modules that produce highly sparse activity within each cycle by instantiating a local winner-take-all-like operation. Equipped with adaptive mechanisms of bidirectional synaptic plasticity and homeostatic activity regulation, the network is exposed to natural face images of different persons. The images are presented incrementally one per cycle to the lower network layer as a set of Gabor filter responses extracted from local facial landmarks. The images are presented without any person identity labels. In the course of unsupervised learning, the network creates simultaneously vocabularies of reusable local face appearance elements, captures relations between the elements by linking associatively those parts that encode the same face identity, develops the higher-order identity symbols for the memorized compositions and projects this information back onto the vocabularies in generative manner. This learning corresponds to the simultaneous formation of bottom-up, lateral and top-down synaptic connectivity within and between the network layers. In the mature connectivity state, the network holds thus full compositional description of the experienced faces in form of sparse memory traces that reside in the feed-forward and recurrent connectivity. Due to the generative nature of the established representation, the network is able to recreate the full compositional description of a memorized face in terms of all its constituent parts given only its higher-order identity symbol or a subset of its parts. In the test phase, the network successfully proves its ability to recognize identity and gender of the persons from alternative face views not shown before. An intriguing feature of the emerging memory network is its ability to self-generate activity spontaneously in absence of the external stimuli. In this sleep-like off-line mode, the network shows a self-sustaining replay of the memory content formed during the previous learning. Remarkably, the recognition performance is tremendously boosted after this off-line memory reprocessing. The performance boost is articulated stronger on those face views that deviate more from the original view shown during the learning. This indicates that the off-line memory reprocessing during the sleep-like state specifically improves the generalization capability of the memory network. The positive effect turns out to be surprisingly independent of synapse-specific plasticity, relying completely on the synapse-unspecific, homeostatic activity regulation across the memory network. The developed network demonstrates thus functionality not shown by any previous neuronal modeling approach. It forms and maintains a memory domain for compositional, generative object representation in unsupervised manner through experience with natural visual images, using both on- ("wake") and off-line ("sleep") learning regimes. This functionality offers a promising departure point for further studies, aiming for deeper insight into the learning mechanisms employed by the brain and their consequent implementation in the artificial adaptive systems for solving complex tasks not tractable so far.Gegenwärtig besteht immer noch ein enormer Abstand zwischen der Lernfähigkeit von künstlichen und biologischen Informationsverarbeitungssystemen. Dieser Abstand ließe sich durch eine bessere Einsicht in die höheren Funktionen des Gehirns wie Lernen und Gedächtnis verringern. Im visuellen Kortex etwa werden die Objekte innerhalb kürzester Zeit entlang der hierarchischen Verarbeitungspfade in ihre Bestandteile zerlegt und so durch eine Komposition von Elementen niedrigerer Komplexität dargestellt. Bereits bekannte Objekte werden so aus dem Langzeitgedächtnis abgerufen und wiedererkannt. Wie eine derartige kompositionell-hierarchische Gedächtnisstruktur durch die visuelle Erfahrung zustande kommen kann, ist noch weitgehend ungeklärt. Um dieser Frage nachzugehen, wird hier ein funktionelles Modell eines lernfähigen rekurrenten neuronalen Netzwerkes vorgestellt. Im Netzwerk werden neuronale Mechanismen implementiert, die der kortikalen Verarbeitung und Plastizität zugrunde liegen. Die hierarchische Architektur des Netzwerkes besteht aus zwei nacheinander geschalteten Schichten, die jede eine Anzahl von verteilten, rekurrent vernetzten Modulen beherbergen. Ein Modul umfasst dabei mehrere funktionell separate Subnetzwerke. Jedes solches Modul ist imstande, aus den eintreffenden Signalen eine geeignete Repräsentation für den lokalen Eingaberaum unüberwacht zu lernen. Die fortlaufende Verarbeitung im Netzwerk setzt sich zusammen aus diskreten Fragmenten, genannt Entscheidungszyklen, die man mit den schnellen kortikalen Rhythmen im gamma-Frequenzbereich in Verbindung setzen kann. Die Zyklen sind synchronisiert zwischen den verteilten Modulen. Innerhalb eines Zyklus wird eine lokal umgrenzte winner-take-all-ähnliche Operation in Modulen durchgeführt. Die Kompetitionsstärke wächst im Laufe des Zyklus an. Diese Operation aktiviert in Abhängigkeit von den Eingabesignalen eine sehr kleine Anzahl von Einheiten und verstärkt sie auf Kosten der anderen, um den dargebotenen Reiz in der Netzwerkaktivität abzubilden. Ausgestattet mit adaptiven Mechanismen der bidirektionalen synaptischen Plastizität und der homöostatischen Aktivitätsregulierung, erhält das Netzwerk natürliche Gesichtsbilder von verschiedenen Personen dargeboten. Die Bilder werden der unteren Netzwerkschicht, je ein Bild pro Zyklus, als Ansammlung von Gaborfilterantworten aus lokalen Gesichtslandmarken zugeführt, ohne Information über die Personenidentität zur Verfügung zu stellen. Im Laufe der unüberwachten Lernprozedur formt das Netzwerk die Verbindungsstruktur derart, dass die Gesichter aller dargebotenen Personen im Netzwerk in Form von dünn besiedelten Gedächtnisspuren abgelegt werden. Hierzu werden gleichzeitig vorwärtsgerichtete (bottom-up) und rekurrente (lateral, top-down) synaptische Verbindungen innerhalb und zwischen den Schichten gelernt. Im reifen Verbindungszustand werden infolge dieses Lernens die einzelnen Gesichter als Komposition ihrer Bestandteile auf generative Art gespeichert. Dank der generativen Art der gelernten Struktur reichen schon allein das höhere Identitätssymbol oder eine kleine Teilmenge von zugehörigen Gesichtselementen, um alle Bestandteile der gespeicherten Gesichter aus dem Gedächtnis abzurufen. In der Testphase kann das Netzwerk erfolgreich sowohl die Identität als auch das Geschlecht von Personen aus vorher nicht gezeigten Gesichtsansichten erkennen. Eine bemerkenswerte Eigenschaft der entstandenen Gedächtnisarchitektur ist ihre Fähigkeit, ohne Darbietung von externen Stimuli spontan Aktivitätsmuster zu generieren und die im Gedächtnis abgelegten Inhalte in diesem schlafähnlichen "off-line" Regime wiederzugeben. Interessanterweise ergibt sich aus der Schlafphase ein direkter Vorteil für die Gedächtnisfunktion. Dieser Vorteil macht sich durch eine drastisch verbesserte Erkennungsrate nach der Schlafphase bemerkbar, wenn das Netwerk mit den zuvor nicht dargebotenen Ansichten von den bereits bekannten Personen konfrontiert wird. Die Leistungsverbesserung nach der Schlafphase ist umso deutlicher, je stärker die Alternativansichten vom Original abweichen. Dieser positive Effekt ist zudem komplett unabhängig von der synapsenspezifischen Plastizität und kann allein durch die synapsenunspezifische, homöostatische Regulation der Aktivität im Netzwerk erklärt werden. Das entwickelte Netzwerk demonstriert so eine im Bereich der neuronalen Modellierung bisher nicht gezeigte Funktionalität. Es kann unüberwacht eine Gedächtnisdomäne für kompositionelle, generative Objektrepräsentation durch die Erfahrung mit natürlichen Bildern sowohl im reizgetriebenen, wachähnlichen Zustand als auch im reizabgekoppelten, schlafähnlichen Zustand formen und verwalten. Diese Funktionalität bietet einen vielversprechenden Ausgangspunkt für weitere Studien, die die neuronalen Lernmechanismen des Gehirns ins Visier nehmen und letztendlich deren konsequente Umsetzung in technischen, adaptiven Systemen anstreben

    Booleovská faktorová analýza atraktorovou neuronovou sítí

    Get PDF
    Import 23/08/2017Methods for the discovery of hidden structures of high-dimensional binary data rank among the most important challenges facing the community of machine learning researchers at present. There are many approaches in the literature that try to solve this hitherto rather ill-defined task. The Boolean factor analysis (BFA) studied in this work represents a hidden structure of binary data as Boolean superposition of binary factors complied with the BFA generative model of signals, and the criterion of optimality of BFA solution is given. In these terms, the BFA is a well-defined task completely analogous to linear factor analysis. The main contributions of the dissertation thesis are as follows: Firstly, an efficient BFA method, based on the original attractor neural network with increasing activity (ANNIA), which is subsequently improved through a combination with the expectation-maximization method(EM),so LANNIA method has been developed. Secondly, the characteristics of the ANNIA that are important for LANNIA and ANNIA methods functioning were analyzed. Then the functioning of both methods was validated on artificially generated data sets. Next, the method was applied to real-world data from different areas of science to demonstrate their contribution to this type of analysis. Finally, the BFA method was compared with related methods, including applicability analysis.Jednou z nejdůležitějších výzev současnosti, která stojí před komunitou badatelů z oblasti strojového učení je výzkum metod pro analýzu vysoce-dimenzionálních binárních dat s cílem odhalení jejich skryté struktury. V literatuře můžeme nalézt mnoho přístupů, které se snaží tuto doposud poněkud vágně definovanou úlohu řešit. Booleovská Faktorová Analýza (BFA), jež je předmětem této práce, předpokládá, že skrytou strukturu binárních dat lze reprezentovat jako booleovskou superpozici binárních faktorů tak, aby co nejlépe odpovídala generativnímu modelu signálů BFA a danému kritériu optimálnosti. Za těchto podmínek je BFA dob��e definovaná úloha zcela analogická lineární faktorové analýze. Hlavní přínosy disertační práce, jsou následující: Za prvé byl vyvinut efektivní způsob BFA založený na původní atraktorové neuronové síti s rostoucí aktivitou (ANNIA), která byla následně zlepšena kombinací s metodou expectation–maximization (EM)a tak vytvo5ena metoda LANNIA. Dále byly provedeny analýzy charakteristik ANNIA, které jsou důležité pro fungování obou metod. Funkčnost obou metod byla také ověřena na uměle vytvořených souborech dat pokrývajících celou škálu parametrů generativního modelu. Dále je v práci ukázáno použití metod na reálných datech z různých oblastí vědy s cílem prokázat jejich přínos pro tento typ analýzy. A konečně bylo provedeno i srovnání metod BFA se podobnými metodami včetně analýzy jejich použitelnosti.460 - Katedra informatikyvyhově

    Decay Makes Supervised Predictive Coding Generative

    Get PDF
    Predictive Coding is a hierarchical model of neural computation that approximates backpropagation using only local computations and local learning rules. An important aspect of Predictive Coding is the presence of feedback connections between layers. These feedback connections allow Predictive Coding networks to potentially be generative as well as discriminative. However, Predictive Coding networks trained on supervised classification tasks cannot generate accurate input samples close to the training inputs from the class vectors alone. This problem arises from the fact that generating inputs from classes requires solving an underdetermined system, which contains an infinite number of solutions. Generating the correct inputs involves reaching a specific solution in that infinite solution space. But by imposing a minimum-norm constraint on the state nodes and the synaptic weights of a Predictive Coding network, the solution space collapses to a unique solution that is close to the training inputs. This minimum-norm constraint can be enforced by adding decay to the Predictive Coding equations. Decay is implemented in the form of weight decay and activity decay. Analyses done on linear Predictive Coding networks show that applying weight decay during training helps the network learn weights that can generate the correct input samples from the class vectors, while applying activity decay during input generation helps to lower the variance in the network's generated samples. Additionally, weight decay regularizes the values of the network weights, avoiding extreme values, and improves the rate at which the network converges to equilibrium by regularizing the eigenvalues of the Jacobian at the equilibrium. Experiments on the MNIST dataset of handwritten digits provide evidence that decay makes Predictive Coding networks generative even when the network contains deep layers and uses nonlinear tanh activations. A Predictive Coding network equipped with weight and activity decay successfully generates images resembling MNIST digits from the class vectors alone

    Distribuce míst integrace exprimovaných provirů

    Get PDF
    Pro zajištění účinné exprese svých genů integrují retroviry provirové kopie svých genomů do genomů infikovaných buněk. Epigenetické procesy však mohou narušit a umlčet expresi integrovaných provirů. Takovéto umlčování sice zpomaluje šíření virové infekce, ale vytváří také reservoir latentních provirů, který v důsledku brání účinné léčbě retrovirových (např. HIV-1) infekcí. Umlčování integrujících se retrovirových vektorů navíc omezuje jejich účinou aplikaci v transgenezi či genové terapii. Cílem této práce je popsat interakce mezi expresí retrovirů a hostitelským (epi)genomikým prostředím v místech integrace provirů. Pro splnění stanoveného cíle jsme se rozhodli definovat (epi)genomické prostředí provirů, jejichž exprese není zasažena epigenetickým umlčováním. Jako modelové systémy jsme využili odlišné retrovirové vektory odvozené od ptačího sarkomového a leukózového viru (ASLV), myšího leukemického viru (MLV) nebo lidského viru získané imunodeficience typu 1 (HIV-1), jejichž expresní aktivita v lidských buňkách byla sledována. Za účelem popisu charakteristik míst integrace provirů rezistentních vůči umlčování jsme z infikované populace oddělili buňky nesoucí aktivní proviry, identifikovali místa integrace těchto provirů a porovnali charakteristiky takovýh míst s těmi získanými ze směsné, neselektované...To establish efficient expression of their genes, retroviruses integrate proviral copies into the genomes of the cells they have infected. Epigenetic events, however, silence expression of the integrated proviruses. This silencing protects host cells from harmful viral spread, but also creates a reservoir of latent proviruses that subsequently hinders the cure of retroviral (e.g., HIV-1) infections. Furthermore, the silencing of retrovirus-derived integrative vectors complicates their application in transgenesis and gene therapy. The goal of this thesis is to describe the interaction between retroviral expression and host (epi)genomic environment at the site of proviral integration. To pursue the goal, we sought to define the (epi)genomic environment of the proviruses, which expression is not affected by the epigenetic silencing. Diverse retroviral vectors derived from avian sarcoma and leukosis virus (ASLV), murine leukemia virus (MLV), and human immunodeficiency virus type 1 (HIV-1) were used as model retroviral systems, and expression stability of the vectors in human cell lines was examined. In order to identify the features unique to integration sites of the active proviruses, we sorted the cells positive for the proviral expression, identified their proviral integration sites, and compared them to...Katedra genetiky a mikrobiologieDepartment of Genetics and MicrobiologyPřírodovědecká fakultaFaculty of Scienc
    corecore