6,419 research outputs found

    Neural correlates for price involvement in purchase decisions with regards to fast-moving-consumer-goods

    Get PDF
    Some customers are loyal to their favorite brands, others easily switch between them. A new technique is available to assess differences in brand related behavior. We assume that price and brand-conscious participants show nearly the same activations in emotionally associated brain areas. Price-conscious participants also show an activation of cognitive associated regions. We employed functional magnet resonance imaging during a preference judgment task for fast mov-ing consumer goods. We discuss the results with differences in product and price specific in-volvement and advance that involvement of price-conscious participants is higher because of a higher price interest.internet Neuro market research, Involvement, Price Interest, Reward Circuitry

    Aesthetic preference for art emerges from a weighted integration over hierarchically structured visual features in the brain

    Get PDF
    It is an open question whether preferences for visual art can be lawfully predicted from the basic constituent elements of a visual image. Moreover, little is known about how such preferences are actually constructed in the brain. Here we developed and tested a computational framework to gain an understanding of how the human brain constructs aesthetic value. We show that it is possible to explain human preferences for a piece of art based on an analysis of features present in the image. This was achieved by analyzing the visual properties of drawings and photographs by multiple means, ranging from image statistics extracted by computer vision tools, subjective human ratings about attributes, to a deep convolutional neural network. Crucially, it is possible to predict subjective value ratings not only within but also across individuals, speaking to the possibility that much of the variance in human visual preference is shared across individuals. Neuroimaging data revealed that preference computations occur in the brain by means of a graded hierarchical representation of lower and higher level features in the visual system. These features are in turn integrated to compute an overall subjective preference in the parietal and prefrontal cortex. Our findings suggest that rather than being idiosyncratic, human preferences for art can be explained at least in part as a product of a systematic neural integration over underlying visual features of an image. This work not only advances our understanding of the brain-wide computations underlying value construction but also brings new mechanistic insights to the study of visual aesthetics and art appreciation

    Neuroeconomics: How Neuroscience Can Inform Economics

    Get PDF
    Neuroeconomics uses knowledge about brain mechanisms to inform economic analysis, and roots economics in biology. It opens up the "black box" of the brain, much as organizational economics adds detail to the theory of the firm. Neuroscientists use many tools— including brain imaging, behavior of patients with localized brain lesions, animal behavior, and recording single neuron activity. The key insight for economics is that the brain is composed of multiple systems which interact. Controlled systems ("executive function") interrupt automatic ones. Emotions and cognition both guide decisions. Just as prices and allocations emerge from the interaction of two processes—supply and demand— individual decisions can be modeled as the result of two (or more) processes interacting. Indeed, "dual-process" models of this sort are better rooted in neuroscientific fact, and more empirically accurate, than single-process models (such as utility-maximization). We discuss how brain evidence complicates standard assumptions about basic preference, to include homeostasis and other kinds of state-dependence. We also discuss applications to intertemporal choice, risk and decision making, and game theory. Intertemporal choice appears to be domain-specific and heavily influenced by emotion. The simplified ß-d of quasi-hyperbolic discounting is supported by activation in distinct regions of limbic and cortical systems. In risky decision, imaging data tentatively support the idea that gains and losses are coded separately, and that ambiguity is distinct from risk, because it activates fear and discomfort regions. (Ironically, lesion patients who do not receive fear signals in prefrontal cortex are "rationally" neutral toward ambiguity.) Game theory studies show the effect of brain regions implicated in "theory of mind", correlates of strategic skill, and effects of hormones and other biological variables. Finally, economics can contribute to neuroscience because simple rational-choice models are useful for understanding highly-evolved behavior like motor actions that earn rewards, and Bayesian integration of sensorimotor information

    Neural correlates of the affect heuristic during brand choice

    Get PDF
    In this working paper it is investigated how affect and cognition interact in consumer decision making. The research framework is multidisciplinary by applying a neuroscientific method to answer the question which information is processed during brand choice immediately when the decision is computed in the test person’s brain. In a neuroscientific experiment test persons perform binary decision-making tasks between different brands of the same product class. The results suggest that the presence of the respondent’s first choice brand leads to a specific modulation of the neural brain activity, which can be described as neural correlate of Slovic’s affect heuristic concept.Neuroeconomics, brand choice, cognition, affect

    A unified coding strategy for processing faces and voices

    Get PDF
    Both faces and voices are rich in socially-relevant information, which humans are remarkably adept at extracting, including a person's identity, age, gender, affective state, personality, etc. Here, we review accumulating evidence from behavioral, neuropsychological, electrophysiological, and neuroimaging studies which suggest that the cognitive and neural processing mechanisms engaged by perceiving faces or voices are highly similar, despite the very different nature of their sensory input. The similarity between the two mechanisms likely facilitates the multi-modal integration of facial and vocal information during everyday social interactions. These findings emphasize a parsimonious principle of cerebral organization, where similar computational problems in different modalities are solved using similar solutions
    corecore