20 research outputs found

    Chaining Algorithm and Protocol for Peer-to-Peer Streaming Video on Demand System

    Get PDF
    ABSTRACT As the various architectures and protocol have been implemented a tru

    Video delivery technologies for large-scale deployment of multimedia applications

    Full text link

    Cooperative Interval Caching in Clustered Multimedia Servers

    Get PDF
    In this project, we design a cooperative interval caching (CIC) algorithm for clustered video servers, and evaluate its performance through simulation. The CIC algorithm describes how distributed caches in the cluster cooperate to serve a given request. With CIC, a clustered server can accommodate twice (95%) more number of cached streams than the clustered server without cache cooperation. There are two major processes of CIC to find available cache space for a given request in the cluster: to find the server containing the information about the preceding request of the given request; and to find another server which may have available cache space if the current server turns out not to have enough cache space. The performance study shows that it is better to direct the requests of the same movie to the same server so that a request can always find the information of its preceding request from the same server. The CIC algorithm uses scoreboard mechanism to achieve this goal. The performance results also show that when the current server fails to find cache space for a given request, randomly selecting a server works well to find the next server which may have available cache space. The combination of scoreboard and random selection to find the preceding request information and the next available server outperforms other combinations of different approaches by 86%. With CIC, the cooperative distributed caches can support as many cached streams as one integrated cache does. In some cases, the cooperative distributed caches accommodate more number of cached streams than one integrated cache would do. The CIC algorithm makes every server in the cluster perform identical tasks to eliminate any single point of failure, there by increasing availability of the server cluster. The CIC algorithm also specifies how to smoothly add or remove a server to or from the cluster to provide the server with scalability

    Interactivity And User-heterogeneity In On Demand Broadcast Video

    Get PDF
    Video-On-Demand (VOD) has appeared as an important technology for many multimedia applications such as news on demand, digital libraries, home entertainment, and distance learning. In its simplest form, delivery of a video stream requires a dedicated channel for each video session. This scheme is very expensive and non-scalable. To preserve server bandwidth, many users can share a channel using multicast. Two types of multicast have been considered. In a non-periodic multicast setting, users make video requests to the server; and it serves them according to some scheduling policy. In a periodic broadcast environment, the server does not wait for service requests. It broadcasts a video cyclically, e.g., a new stream of the same video is started every t seconds. Although, this type of approach does not guarantee true VOD, the worst service latency experienced by any client is less than t seconds. A distinct advantage of this approach is that it can serve a very large community of users using minimal server bandwidth. In VOD System it is desirable to provide the user with the video-cassette-recorder-like (VCR) capabilities such as fast-forwarding a video or jumping to a specific frame. This issue in the broadcast framework is addressed, where each video and its interactive version are broadcast repeatedly on the network. Existing techniques rely on data prefetching as the mechanism to provide this functionality. This approach provides limited usability since the prefetching rate cannot keep up with typical fast-forward speeds. In the same environment, end users might have access to different bandwidth capabilities at different times. Current periodic broadcast schemes, do not take advantage of high-bandwidth capabilities, nor do they adapt to the low-bandwidth limitation of the receivers. A heterogeneous technique is presented that can adapt to a range of receiving bandwidth capability. Given a server bandwidth and a range of different client bandwidths, users employing the proposed technique will choose either to use their full reception bandwidth capability and therefore accessing the video at a very short time, or using part or enough reception bandwidth at the expense of a longer access latency

    Provider-Controlled Bandwidth Management for HTTP-based Video Delivery

    Get PDF
    Over the past few years, a revolution in video delivery technology has taken place as mobile viewers and over-the-top (OTT) distribution paradigms have significantly changed the landscape of video delivery services. For decades, high quality video was only available in the home via linear television or physical media. Though Web-based services brought video to desktop and laptop computers, the dominance of proprietary delivery protocols and codecs inhibited research efforts. The recent emergence of HTTP adaptive streaming protocols has prompted a re-evaluation of legacy video delivery paradigms and introduced new questions as to the scalability and manageability of OTT video delivery. This dissertation addresses the question of how to enable for content and network service providers the ability to monitor and manage large numbers of HTTP adaptive streaming clients in an OTT environment. Our early work focused on demonstrating the viability of server-side pacing schemes to produce an HTTP-based streaming server. We also investigated the ability of client-side pacing schemes to work with both commodity HTTP servers and our HTTP streaming server. Continuing our client-side pacing research, we developed our own client-side data proxy architecture which was implemented on a variety of mobile devices and operating systems. We used the portable client architecture as a platform for investigating different rate adaptation schemes and algorithms. We then concentrated on evaluating the network impact of multiple adaptive bitrate clients competing for limited network resources, and developing schemes for enforcing fair access to network resources. The main contribution of this dissertation is the definition of segment-level client and network techniques for enforcing class of service (CoS) differentiation between OTT HTTP adaptive streaming clients. We developed a segment-level network proxy architecture which works transparently with adaptive bitrate clients through the use of segment replacement. We also defined a segment-level rate adaptation algorithm which uses download aborts to enforce CoS differentiation across distributed independent clients. The segment-level abstraction more accurately models application-network interactions and highlights the difference between segment-level and packet-level time scales. Our segment-level CoS enforcement techniques provide a foundation for creating scalable managed OTT video delivery services

    Ontwerp en evaluatie van content distributie netwerken voor multimediale streaming diensten.

    Get PDF
    Traditionele Internetgebaseerde diensten voor het verspreiden van bestanden, zoals Web browsen en het versturen van e-mails, worden aangeboden via één centrale server. Meer recente netwerkdiensten zoals interactieve digitale televisie of video-op-aanvraag vereisen echter hoge kwaliteitsgaranties (QoS), zoals een lage en constante netwerkvertraging, en verbruiken een aanzienlijke hoeveelheid bandbreedte op het netwerk. Architecturen met één centrale server kunnen deze garanties moeilijk bieden en voldoen daarom niet meer aan de hoge eisen van de volgende generatie multimediatoepassingen. In dit onderzoek worden daarom nieuwe netwerkarchitecturen bestudeerd, die een dergelijke dienstkwaliteit kunnen ondersteunen. Zowel peer-to-peer mechanismes, zoals bij het uitwisselen van muziekbestanden tussen eindgebruikers, als servergebaseerde oplossingen, zoals gedistribueerde caches en content distributie netwerken (CDN's), komen aan bod. Afhankelijk van de bestudeerde dienst en de gebruikte netwerktechnologieën en -architectuur, worden gecentraliseerde algoritmen voor netwerkontwerp voorgesteld. Deze algoritmen optimaliseren de plaatsing van de servers of netwerkcaches en bepalen de nodige capaciteit van de servers en netwerklinks. De dynamische plaatsing van de aangeboden bestanden in de verschillende netwerkelementen wordt aangepast aan de heersende staat van het netwerk en aan de variërende aanvraagpatronen van de eindgebruikers. Serverselectie, herroutering van aanvragen en het verspreiden van de belasting over het hele netwerk komen hierbij ook aan bod

    Video On Demand System For Heterogeneous Wireless Mobile Networks

    Get PDF
    In recent years, the services of the Video on Demand (VOD) system have taken place with the improvement of the high-speed networking and enhancement of the digital video technology. The VOD system allows users to select their desired videos from a remote server, so that they can watch them instantly anytime and anywhere through public communication networks. Currently the challenge of the VOD system is to provide a seamless video access to different type of devices with a small service delay in the existing heterogeneous network environments, such as WIMAX network. There are many issues need to be tackled in designing a VOD system including the system architectures, broadcasting techniques, caching techniques, transitions between different networks, and heterogeneous mobile devices. This thesis presents a new system architecture called Video on Demand system architecture for Heterogeneous Mobile Network (VODHMN) environment. This system architecture supports VOD services for heterogeneous devices with a different capability through different networks with a limited broadcasting bandwidth. The VODHMN system architecture introduces two new components that are consist of Local Media Forwarder (LMF) and Global Media Forwarder (GMF) components as compared to the existing architecture. Both of these components can cope with the wireless environment in term of connectivity
    corecore