65 research outputs found

    Do Hard SAT-Related Reasoning Tasks Become Easier in the Krom Fragment?

    Full text link
    Many reasoning problems are based on the problem of satisfiability (SAT). While SAT itself becomes easy when restricting the structure of the formulas in a certain way, the situation is more opaque for more involved decision problems. We consider here the CardMinSat problem which asks, given a propositional formula ϕ\phi and an atom xx, whether xx is true in some cardinality-minimal model of ϕ\phi. This problem is easy for the Horn fragment, but, as we will show in this paper, remains Θ2\Theta_2-complete (and thus NP\mathrm{NP}-hard) for the Krom fragment (which is given by formulas in CNF where clauses have at most two literals). We will make use of this fact to study the complexity of reasoning tasks in belief revision and logic-based abduction and show that, while in some cases the restriction to Krom formulas leads to a decrease of complexity, in others it does not. We thus also consider the CardMinSat problem with respect to additional restrictions to Krom formulas towards a better understanding of the tractability frontier of such problems

    A Fine-Grained Hierarchy of Hard Problems in the Separated Fragment

    Get PDF
    Recently, the separated fragment (SF) has been introduced and proved to be decidable. Its defining principle is that universally and existentially quantified variables may not occur together in atoms. The known upper bound on the time required to decide SF's satisfiability problem is formulated in terms of quantifier alternations: Given an SF sentence ∃z⃗∀x⃗1∃y⃗1
∀x⃗n∃y⃗n.ψ\exists \vec{z} \forall \vec{x}_1 \exists \vec{y}_1 \ldots \forall \vec{x}_n \exists \vec{y}_n . \psi in which ψ\psi is quantifier free, satisfiability can be decided in nondeterministic nn-fold exponential time. In the present paper, we conduct a more fine-grained analysis of the complexity of SF-satisfiability. We derive an upper and a lower bound in terms of the degree of interaction of existential variables (short: degree)}---a novel measure of how many separate existential quantifier blocks in a sentence are connected via joint occurrences of variables in atoms. Our main result is the kk-NEXPTIME-completeness of the satisfiability problem for the set SF≀kSF_{\leq k} of all SF sentences that have degree kk or smaller. Consequently, we show that SF-satisfiability is non-elementary in general, since SF is defined without restrictions on the degree. Beyond trivial lower bounds, nothing has been known about the hardness of SF-satisfiability so far.Comment: Full version of the LICS 2017 extended abstract having the same title, 38 page

    Capturing the polynomial hierarchy by second-order revised Krom logic

    Full text link
    We study the expressive power and complexity of second-order revised Krom logic (SO-KROMr^{r}). On ordered finite structures, we show that its existential fragment ÎŁ11\Sigma^1_1-KROMr^r equals ÎŁ11\Sigma^1_1-KROM, and captures NL. On all finite structures, for k≄1k\geq 1, we show that ÎŁk1\Sigma^1_{k} equals ÎŁk+11\Sigma^1_{k+1}-KROMr^r if kk is even, and Πk1\Pi^1_{k} equals Πk+11\Pi^1_{k+1}-KROMr^r if kk is odd. The result gives an alternative logic to capture the polynomial hierarchy. We also introduce an extended version of second-order Krom logic (SO-EKROM). On ordered finite structures, we prove that SO-EKROM collapses to Π21\Pi^{1}_{2}-EKROM and equals Π11\Pi^1_1. Both of SO-EKROM and Π21\Pi^{1}_{2}-EKROM capture co-NP on ordered finite structures

    On Sub-Propositional Fragments of Modal Logic

    Get PDF
    In this paper, we consider the well-known modal logics K\mathbf{K}, T\mathbf{T}, K4\mathbf{K4}, and S4\mathbf{S4}, and we study some of their sub-propositional fragments, namely the classical Horn fragment, the Krom fragment, the so-called core fragment, defined as the intersection of the Horn and the Krom fragments, plus their sub-fragments obtained by limiting the use of boxes and diamonds in clauses. We focus, first, on the relative expressive power of such languages: we introduce a suitable measure of expressive power, and we obtain a complex hierarchy that encompasses all fragments of the considered logics. Then, after observing the low expressive power, in particular, of the Horn fragments without diamonds, we study the computational complexity of their satisfiability problem, proving that, in general, it becomes polynomial

    A cookbook for temporal conceptual data modelling with description logic

    Get PDF
    We design temporal description logics suitable for reasoning about temporal conceptual data models and investigate their computational complexity. Our formalisms are based on DL-Lite logics with three types of concept inclusions (ranging from atomic concept inclusions and disjointness to the full Booleans), as well as cardinality constraints and role inclusions. In the temporal dimension, they capture future and past temporal operators on concepts, flexible and rigid roles, the operators `always' and `some time' on roles, data assertions for particular moments of time and global concept inclusions. The logics are interpreted over the Cartesian products of object domains and the flow of time (Z,<), satisfying the constant domain assumption. We prove that the most expressive of our temporal description logics (which can capture lifespan cardinalities and either qualitative or quantitative evolution constraints) turn out to be undecidable. However, by omitting some of the temporal operators on concepts/roles or by restricting the form of concept inclusions we obtain logics whose complexity ranges between PSpace and NLogSpace. These positive results were obtained by reduction to various clausal fragments of propositional temporal logic, which opens a way to employ propositional or first-order temporal provers for reasoning about temporal data models

    Decidable fragments of first-order logic and of first-order linear arithmetic with uninterpreted predicates

    Get PDF
    First-order logic is one of the most prominent formalisms in computer science and mathematics. Since there is no algorithm capable of solving its satisfiability problem, first-order logic is said to be undecidable. The classical decision problem is the quest for a delineation between the decidable and the undecidable parts. The results presented in this thesis shed more light on the boundary and open new perspectives on the landscape of known decidable fragments. In the first part we focus on the new concept of separateness of variables and explore its applicability to the classical decision problem and beyond. Two disjoint sets of first-order variables are separated in a given formula if none of its atoms contains variables from both sets. This notion facilitates the definition of decidable extensions of many well-known decidable first-order fragments. We demonstrate this for several prefix fragments, several guarded fragments, the two-variable fragment, and for the fluted fragment. Although the extensions exhibit the same expressive power as the respective originals, certain logical properties can be expressed much more succinctly. In two cases the succinctness gap cannot be bounded using elementary functions. This fact already hints at computationally hard satisfiability problems. Indeed, we derive non-elementary lower bounds for the separated fragment, an extension of the Bernays-Schönfinkel-Ramsey fragment (E*A*-prefix sentences). On the semantic level, separateness of quantified variables may lead to weaker dependences than we encounter in general. We investigate this property in the context of model-checking games. The focus of the second part of the thesis is on linear arithmetic with uninterpreted predicates. Two novel decidable fragments are presented, both based on the Bernays-Schönfinkel-Ramsey fragment. On the negative side, we identify several small fragments of the language for which satisfiability is undecidable.Untersuchungen der Logik erster Stufe blicken auf eine lange Tradition zurĂŒck. Es ist allgemein bekannt, dass das zugehörige ErfĂŒllbarkeitsproblem im Allgemeinen nicht algorithmisch gelöst werden kann - man spricht daher von einer unentscheidbaren Logik. Diese Beobachtung wirft ein Schlaglicht auf die prinzipiellen Grenzen der FĂ€higkeiten von Computern im Allgemeinen aber auch des automatischen Schließens im Besonderen. Das Hilbertsche Entscheidungsproblem wird heute als die Erforschung der Grenze zwischen entscheidbaren und unentscheidbaren Teilen der Logik erster Stufe verstanden, wobei die untersuchten Fragmente der Logik mithilfe klar zu erfassender und berechenbarer syntaktischer Eigenschaften beschrieben werden. Viele Forscher haben bereits zu dieser Untersuchung beigetragen und zahlreiche entscheidbare und unentscheidbare Fragmente entdeckt und erforscht. Die vorliegende Dissertation setzt diese Tradition mit einer Reihe vornehmlich positiver Resultate fort und eröffnet neue Blickwinkel auf eine Reihe von Fragmenten, die im Laufe der letzten einhundert Jahre untersucht wurden. Im ersten Teil der Arbeit steht das syntaktische Konzept der Separiertheit von Variablen im Mittelpunkt, und dessen Anwendbarkeit auf das Entscheidungsproblem und darĂŒber hinaus wird erforscht. Zwei Mengen von Individuenvariablen gelten bezĂŒglich einer gegebenen Formel als separiert, falls in jedem Atom der Formel die Variablen aus höchstens einer der beiden Mengen vorkommen. Mithilfe dieses leicht verstĂ€ndlichen Begriffs lassen sich viele wohlbekannte entscheidbare Fragmente der Logik erster Stufe zu grĂ¶ĂŸeren Klassen von Formeln erweitern, die dennoch entscheidbar sind. Dieser Ansatz wird fĂŒr neun Fragmente im Detail dargelegt, darunter mehrere PrĂ€fix-Fragmente, das Zwei-Variablen-Fragment und sogenannte "guarded" und " uted" Fragmente. Dabei stellt sich heraus, dass alle erweiterten Fragmente ebenfalls das monadische Fragment erster Stufe ohne Gleichheit enthalten. Obwohl die erweiterte Syntax in den betrachteten FĂ€llen nicht mit einer erhöhten AusdrucksstĂ€rke einhergeht, können bestimmte ZusammenhĂ€nge mithilfe der erweiterten Syntax deutlich kĂŒrzer formuliert werden. Zumindest in zwei FĂ€llen ist diese Diskrepanz nicht durch eine elementare Funktion zu beschrĂ€nken. Dies liefert einen ersten Hinweis darauf, dass die algorithmische Lösung des ErfĂŒllbarkeitsproblems fĂŒr die erweiterten Fragmente mit sehr hohem Rechenaufwand verbunden ist. TatsĂ€chlich wird eine nicht-elementare untere Schranke fĂŒr den entsprechenden Zeitbedarf beim sogenannten separierten Fragment, einer Erweiterung des bekannten Bernays-Schönfinkel-Ramsey-Fragments, abgeleitet. DarĂŒber hinaus wird der Ein uss der Separiertheit von Individuenvariablen auf der semantischen Ebene untersucht, wo AbhĂ€ngigkeiten zwischen quantifizierten Variablen durch deren Separiertheit stark abgeschwĂ€cht werden können. FĂŒr die genauere formale Betrachtung solcher als schwach bezeichneten AbhĂ€ngigkeiten wird auf sogenannte Hintikka-Spiele zurĂŒckgegriffen. Den Schwerpunkt des zweiten Teils der vorliegenden Arbeit bildet das Entscheidungsproblem fĂŒr die lineare Arithmetik ĂŒber den rationalen Zahlen in Verbindung mit uninterpretierten PrĂ€dikaten. Es werden zwei bislang unbekannte entscheidbare Fragmente dieser Sprache vorgestellt, die beide auf dem Bernays-Schönfinkel-Ramsey-Fragment aufbauen. Ferner werden neue negative Resultate entwickelt und mehrere unentscheidbare Fragmente vorgestellt, die lediglich einen sehr eingeschrĂ€nkten Teil der Sprache benötigen
    • 

    corecore