15 research outputs found

    Data Deduplication Technology for Cloud Storage

    Get PDF
    With the explosive growth of information data, the data storage system has stepped into the cloud storage era. Although the core of the cloud storage system is distributed file system in solving the problem of mass data storage, a large number of duplicate data exist in all storage system. File systems are designed to control how files are stored and retrieved. Fewer studies focus on the cloud file system deduplication technologies at the application level, especially for the Hadoop distributed file system. In this paper, we design a file deduplication framework on Hadoop distributed file system for cloud application developer. Proposed RFD-HDFS and FD-HDFS two data deduplication solutions process data deduplication online, which improves storage space utilisation and reduces the redundancy. In the end of the paper, we test the disk utilisation and the file upload performance on RFD-HDFS and FD-HDFS, and compare HDFS with the disk utilisation of two system frameworks. The results show that the two-system framework not only implements data deduplication function but also effectively reduces the disk utilisation of duplicate files. So, the proposed framework can indeed reduce the storage space by eliminating redundant HDFS file

    ON OPTIMIZATIONS OF VIRTUAL MACHINE LIVE STORAGE MIGRATION FOR THE CLOUD

    Get PDF
    Virtual Machine (VM) live storage migration is widely performed in the data cen- ters of the Cloud, for the purposes of load balance, reliability, availability, hardware maintenance and system upgrade. It entails moving all the state information of the VM being migrated, including memory state, network state and storage state, from one physical server to another within the same data center or across different data centers. To minimize its performance impact, this migration process is required to be transparent to applications running within the migrating VM, meaning that ap- plications will keep running inside the VM as if there were no migration operations at all. In this dissertation, a thorough literature review is conducted to provide a big picture of the VM live storage migration process, its problems and existing solutions. After an in-depth examination, we observe that a severe IO interference between the VM IO threads and migration IO threads exists and causes both types of the IO threads to suffer from performance degradation. This interference stems from the fact that both types of IO threads share the same critical IO path by reading from and writing to the same shared storage system. Owing to IO resource contention and requests interference between the two different types of IO requests, not only will the IO request queue lengthens in the storage system, but the time-consuming disk seek operations will also become more frequent. Based on this fundamental observation, this dissertation research presents three related but orthogonal solutions that tackle the IO interference problem in order to improve the VM live storage migration performance. First, we introduce the Workload-Aware IO Outsourcing scheme, called WAIO, to improve the VM live storage migration efficiency. Second, we address this problem by proposing a novel scheme, called SnapMig, to improve the VM live storage migration efficiency and eliminate its performance impact on user applications at the source server by effectively leveraging the existing VM snapshots in the backup servers. Third, we propose the IOFollow scheme to improve both the VM performance and migration performance simultaneously. Finally, we outline the direction for the future research work. Advisor: Hong Jian

    Improving Data Management and Data Movement Efficiency in Hybrid Storage Systems

    Get PDF
    University of Minnesota Ph.D. dissertation.July 2017. Major: Computer Science. Advisor: David Du. 1 computer file (PDF); ix, 116 pages.In the big data era, large volumes of data being continuously generated drive the emergence of high performance large capacity storage systems. To reduce the total cost of ownership, storage systems are built in a more composite way with many different types of emerging storage technologies/devices including Storage Class Memory (SCM), Solid State Drives (SSD), Shingle Magnetic Recording (SMR), Hard Disk Drives (HDD), and even across off-premise cloud storage. To make better utilization of each type of storage, industries have provided multi-tier storage through dynamically placing hot data in the faster tiers and cold data in the slower tiers. Data movement happens between devices on one single device and as well as between devices connected via various networks. Toward improving data management and data movement efficiency in such hybrid storage systems, this work makes the following contributions: To bridge the giant semantic gap between applications and modern storage systems, passing a piece of tiny and useful information (I/O access hints) from upper layers to the block storage layer may greatly improve application performance or ease data management in heterogeneous storage systems. We present and develop a generic and flexible framework, called HintStor, to execute and evaluate various I/O access hints on heterogeneous storage systems with minor modifications to the kernel and applications. The design of HintStor contains a new application/user level interface, a file system plugin and a block storage data manager. With HintStor, storage systems composed of various storage devices can perform pre-devised data placement, space reallocation and data migration polices assisted by the added access hints. Each storage device/technology has its own unique price-performance tradeoffs and idiosyncrasies with respect to workload characteristics they prefer to support. To explore the internal access patterns and thus efficiently place data on storage systems with fully connected (i.e., data can move from one device to any other device instead of moving tier by tier) differential pools (each pool consists of storage devices of a particular type), we propose a chunk-level storage-aware workload analyzer framework, simplified as ChewAnalyzer. With ChewAnalzyer, the storage manager can adequately distribute and move the data chunks across different storage pools. To reduce the duplicate content transferred between local storage devices and devices in remote data centers, an inline Network Redundancy Elimination (NRE) process with Content-Defined Chunking (CDC) policy can obtain a higher Redundancy Elimination (RE) ratio but may suffer from a considerably higher computational requirement than fixed-size chunking. We build an inline NRE appliance which incorporates an improved FPGA based scheme to speed up CDC processing. To efficiently utilize the hardware resources, the whole NRE process is handled by a Virtualized NRE (VNRE) controller. The uniqueness of this VNRE that we developed lies in its ability to exploit the redundancy patterns of different TCP flows and customize the chunking process to achieve a higher RE ratio

    A Survey on the Integration of NAND Flash Storage in the Design of File Systems and the Host Storage Software Stack

    Get PDF
    With the ever-increasing amount of data generate in the world, estimated to reach over 200 Zettabytes by 2025, pressure on efficient data storage systems is intensifying. The shift from HDD to flash-based SSD provides one of the most fundamental shifts in storage technology, increasing performance capabilities significantly. However, flash storage comes with different characteristics than prior HDD storage technology. Therefore, storage software was unsuitable for leveraging the capabilities of flash storage. As a result, a plethora of storage applications have been design to better integrate with flash storage and align with flash characteristics. In this literature study we evaluate the effect the introduction of flash storage has had on the design of file systems, which providing one of the most essential mechanisms for managing persistent storage. We analyze the mechanisms for effectively managing flash storage, managing overheads of introduced design requirements, and leverage the capabilities of flash storage. Numerous methods have been adopted in file systems, however prominently revolve around similar design decisions, adhering to the flash hardware constrains, and limiting software intervention. Future design of storage software remains prominent with the constant growth in flash-based storage devices and interfaces, providing an increasing possibility to enhance flash integration in the host storage software stack

    Cross-core Microarchitectural Attacks and Countermeasures

    Get PDF
    In the last decade, multi-threaded systems and resource sharing have brought a number of technologies that facilitate our daily tasks in a way we never imagined. Among others, cloud computing has emerged to offer us powerful computational resources without having to physically acquire and install them, while smartphones have almost acquired the same importance desktop computers had a decade ago. This has only been possible thanks to the ever evolving performance optimization improvements made to modern microarchitectures that efficiently manage concurrent usage of hardware resources. One of the aforementioned optimizations is the usage of shared Last Level Caches (LLCs) to balance different CPU core loads and to maintain coherency between shared memory blocks utilized by different cores. The latter for instance has enabled concurrent execution of several processes in low RAM devices such as smartphones. Although efficient hardware resource sharing has become the de-facto model for several modern technologies, it also poses a major concern with respect to security. Some of the concurrently executed co-resident processes might in fact be malicious and try to take advantage of hardware proximity. New technologies usually claim to be secure by implementing sandboxing techniques and executing processes in isolated software environments, called Virtual Machines (VMs). However, the design of these isolated environments aims at preventing pure software- based attacks and usually does not consider hardware leakages. In fact, the malicious utilization of hardware resources as covert channels might have severe consequences to the privacy of the customers. Our work demonstrates that malicious customers of such technologies can utilize the LLC as the covert channel to obtain sensitive information from a co-resident victim. We show that the LLC is an attractive resource to be targeted by attackers, as it offers high resolution and, unlike previous microarchitectural attacks, does not require core-colocation. Particularly concerning are the cases in which cryptography is compromised, as it is the main component of every security solution. In this sense, the presented work does not only introduce three attack variants that can be applicable in different scenarios, but also demonstrates the ability to recover cryptographic keys (e.g. AES and RSA) and TLS session messages across VMs, bypassing sandboxing techniques. Finally, two countermeasures to prevent microarchitectural attacks in general and LLC attacks in particular from retrieving fine- grain information are presented. Unlike previously proposed countermeasures, ours do not add permanent overheads in the system but can be utilized as preemptive defenses. The first identifies leakages in cryptographic software that can potentially lead to key extraction, and thus, can be utilized by cryptographic code designers to ensure the sanity of their libraries before deployment. The second detects microarchitectural attacks embedded into innocent-looking binaries, preventing them from being posted in official application repositories that usually have the full trust of the customer
    corecore