360 research outputs found

    Congestion Control for Streaming Media

    Get PDF
    The Internet has assumed the role of the underlying communication network for applications such as file transfer, electronic mail, Web browsing and multimedia streaming. Multimedia streaming, in particular, is growing with the growth in power and connectivity of today\u27s computers. These Internet applications have a variety of network service requirements and traffic characteristics, which presents new challenges to the single best-effort service of today\u27s Internet. TCP, the de facto Internet transport protocol, has been successful in satisfying the needs of traditional Internet applications, but fails to satisfy the increasingly popular delay sensitive multimedia applications. Streaming applications often use UDP without a proper congestion avoidance mechanisms, threatening the well-being of the Internet. This dissertation presents an IP router traffic management mechanism, referred to as Crimson, that can be seamlessly deployed in the current Internet to protect well-behaving traffic from misbehaving traffic and support Quality of Service (QoS) requirements of delay sensitive multimedia applications as well as traditional Internet applications. In addition, as a means to enhance Internet support for multimedia streaming, this dissertation report presents design and evaluation of a TCP-Friendly and streaming-friendly transport protocol called the Multimedia Transport Protocol (MTP). Through a simulation study this report shows the Crimson network efficiently handles network congestion and minimizes queuing delay while providing affordable fairness protection from misbehaving flows over a wide range of traffic conditions. In addition, our results show that MTP offers streaming performance comparable to that provided by UDP, while doing so under a TCP-Friendly rate

    Design and Implementation of a Python-Based Active Network Platform for Network Management and Control

    Get PDF
    Active networks can provide lightweight solutions for network management-related tasks. Specific requirements for these tasks have to be met, while at the same time several issues crucial for active networks can be solved rather easily. A system addressing especially network management was developed and implemented. It provides a flexible environment for rapid development using the platform-independent programming language Python, and also supports platform dependent native code. By allowing to add new functions to network devices it improves the performance of Internet routers, and simplifies the introduction and maintenance of new services

    Service quality measurements for IPv6 inter-networks

    Get PDF
    Measurement-based performance evaluation of network traffic is becoming very important, especially for networks trying to provide differentiated levels of service quality to the different application flows. The non-identical response of flows to the different types of network-imposed performance degradation raises the need for ubiquitous measurement mechanisms, able to measure numerous performance properties, and being equally applicable to different applications and transports. This paper presents a new measurement mechanism, facilitated by the steady introduction of IPv6 in network nodes and hosts, which exploits native features of the protocol to provide support for performance measurements at the network (IP) layer. IPv6 Extension Headers have been used to carry the triggers involving the measurement activity and the measurement data in-line with the payload data itself, providing a high level of probability that the behaviour of the real user traffic flows is observed. End-to-end one-way delay, jitter, loss, and throughput have been measured for applications operating on top of both reliable and unreliable transports, over different-capacity IPv6 network configurations. We conclude that this technique could form the basis for future Internet measurements that can be dynamically deployed where and when required in a multi-service IP environment

    QoS in Today's Internet

    Get PDF
    To be able to guarantee service quality end-to-end Quality of Service has to be deployed. This thesis addresses the problems with applying QoS end-to-end over today’s Internet. A rather pessimistic conclusion states that QoS over Internet is hard (impossible?) to realize without introducing virtual circuits or similar. The concept of flows and label switching is introduced. Some QoS techniques are presented

    Managing Network Delay for Browser Multiplayer Games

    Get PDF
    Latency is one of the key performance elements affecting the quality of experience (QoE) in computer games. Latency in the context of games can be defined as the time between the user input and the result on the screen. In order for the QoE to be satisfactory the game needs to be able to react fast enough to player input. In networked multiplayer games, latency is composed of network delay and local delays. Some major sources of network delay are queuing delay and head-of-line (HOL) blocking delay. Network delay in the Internet can be even in the order of seconds. In this thesis we discuss what feasible networking solutions exist for browser multiplayer games. We conduct a literature study to analyze the Differentiated Services architecture, some salient Active Queue Management (AQM) algorithms (RED, PIE, CoDel and FQ-CoDel), the Explicit Congestion Notification (ECN) concept and network protocols for web browser (WebSocket, QUIC and WebRTC). RED, PIE and CoDel as single-queue implementations would be sub-optimal for providing low latency to game traffic. FQ-CoDel is a multi-queue AQM and provides flow separation that is able to prevent queue-building bulk transfers from notably hampering latency-sensitive flows. WebRTC Data-Channel seems promising for games since it can be used for sending arbitrary application data and it can avoid HOL blocking. None of the network protocols, however, provide completely satisfactory support for the transport needs of multiplayer games: WebRTC is not designed for client-server connections, QUIC is not designed for traffic patterns typical for multiplayer games and WebSocket would require parallel connections to mitigate the effects of HOL blocking

    Compressibility and permeability of solidified dredged marine soils (DMS) with the addition of cement andor waste granular materials (WGM)

    Get PDF
    Dredged marine soils that obtained from dredging work were characterize as geo-waste, which is prone to be dumped rather than to be reused. This type of soil is high in compressibility and low in load bearing capacity. The engineering properties of this soft soil can be improve via soil solidification method. Cement is the common hydraulic binder used in soil solidification, were found to generate the emission of greenhouse gasses (GHG), particularly carbon dioxide (CO2) which also had affected the earth’s atmosphere. Therefore, there has been an increasing interest in using alternate pozzolanic materials such as waste granular materials (WGM) to fully or partially substituted the use of cement in soil solidification. WGM such as coal bottom ash (BA) and palm oil clinker (POC) were opted due to its pozzolanic properties. Prior to the planning of reclamation work using DMS admixed with conventional and/or alternate pozzolanic materials, the consolidation characteristics of the admixed materials must be acknowledged. Hence, the present study will examine the amount of settlement and coefficient of permeability (k) of DMS treated with cement and/or WGM in laboratory-scale experiments. Samples were prepared in various proportion in order to examine the individual effect of the cement and/or alternate pozzolanic materials on compressibility and permeability. For cement-admixed DMS, sample with 20 % of cement have significantly reduced the settlement than untreated and 10 % cemented DMS. For WGM-admixed DMS, the initial void ratio is low as compared to the untreated DMS due to the rearrangement of soil particles, which is densely packed. For cement-WGM-admixed DMS, samples of 15C50BA and 15C50POC displayed significant settlement reduction than 10C100BA, 10C100POC and untreated samples

    Scheduling for Proportional Differentiated Services on the Internet

    Get PDF
    Proportional Differentiated Services can be provisioned in terms of bandwidth, delay, or packet loss. Several studies contributed schedulers and packet droppers that achieved proportional bandwidth, delay, or loss differentiation. However, all these schemes differentiated in terms of only one of the three metrics. A simple, unified, scalable, and robust scheme to simultaneously control all three metrics was felt important. By controlling just delay and packet loss, proportional differentiation can be achieved in terms of all three metrics. A robust adaptive scheduler for proportional delay differentiation services is presented. Proportional services are further policed by a class based packet dropper. The combination of the adaptive scheduler and the packet dropper treats different traffic classes proportionally in terms of all three metrics. Simulation experiments show that regardless of the network traffic characteristics, our scheme can effectively differentiate services in terms of bandwidth, delay, and loss simultaneously

    QoS-enabled integration of wireless sensor networks and the internet

    Get PDF
    Recent developments in sensor networking for both military and civilian applications emphasized the need for a reliable integration of sensor networks with the Internet. For sensor networks deployed in various military applications, it is important that collected information be delivered as fast as possible with minimum delays. Information collected by sensor networks has different priority levels and hence QoS profiles must be provided in accordance with those priorities. In this study, an integration module is proposed. The objective of the module is to provide preferential services for high-priority traffic. The integration process consists of three phases: registration, control, and monitor. The three phases will be conducted by three software components: the registration service manager (RSM), the QoS control manager (QCM), and the network monitor manager (NMM). The three software components run on a stand-alone laptop and together form the integration controller (IC), which is the core of the integration module.http://archive.org/details/qosenabledintegr109451729Approved for public release; distribution is unlimited

    Enterprise network convergence: path to cost optimization

    Get PDF
    During the past two decades, telecommunications has evolved a great deal. In the eighties, people were using television, radio and telephone as their communication systems. Eventually, the introduction of the Internet and the WWW immensely transformed the telecommunications industry. This internet revolution brought about a huge change in the way businesses communicated and operated. Enterprise networks now had an increasing demand for more bandwidth as they started to embrace newer technologies. The requirements of the enterprise networks grew as the applications and services that were used in the network expanded. This stipulation for fast and high performance communication systems has now led to the emergence of converged network solutions. Enterprises across the globe are investigating new ways to implement voice, video, and data over a single network for various reasons – to optimize network costs, to restructure their communication system, to extend next generation networking abilities, or to bridge the gap between their corporate network and the existing technological progress. To date, organizations had multiple network services to support a range of communication needs. Investing in this type of multiple communication infrastructures limits the networks ability to provide resourceful bandwidth optimization services throughout the system. Thus, as the requirements for the corporate networks to handle dynamic traffic grow day by day, the need for a more effective and efficient network arises. A converged network is the solution for enterprises aspiring to employ advanced applications and innovative services. This thesis will emphasize the importance of converging network infrastructure and prove that it leads to cost savings. It discusses the characteristics, architecture, and relevant protocols of the voice, data and video traffic over both traditional infrastructure and converged architecture. While IP-based networks present excellent quality for non real-time data networking, the network by itself is not capable of providing reliable, quality and secure services for real-time traffic. In order for IP networks to perform reliable and timely transmission of real-time data, additional mechanisms to reduce delay, jitter and packet loss are required. Therefore, this thesis will also discuss the important mechanisms for running real-time traffic like voice and video over an IP network. Lastly, it will also provide an example of an enterprise network specifications (voice, video and data), and present an in depth cost analysis of a typical network vs. a converged network to prove that converged infrastructures provide significant savings
    • …
    corecore