63 research outputs found

    A KLM Perspective on Defeasible Reasoning for Description Logics

    Get PDF
    In this paper we present an approach to defeasible reasoning for the description logic ALC. The results discussed here are based on work done by Kraus, Lehmann and Magidor (KLM) on defeasible conditionals in the propositional case. We consider versions of a preferential semantics for two forms of defeasible subsumption, and link these semantic constructions formally to KLM-style syntactic properties via representation results. In addition to showing that the semantics is appropriate, these results pave the way for more effective decision procedures for defeasible reasoning in description logics. With the semantics of the defeasible version of ALC in place, we turn to the investigation of an appropriate form of defeasible entailment for this enriched version of ALC. This investigation includes an algorithm for the computation of a form of defeasible entailment known as rational closure in the propositional case. Importantly, the algorithm relies completely on classical entailment checks and shows that the computational complexity of reasoning over defeasible ontologies is no worse than that of the underlying classical ALC. Before concluding, we take a brief tour of some existing work on defeasible extensions of ALC that go beyond defeasible subsumption

    Reasoning about Typicality and Probabilities in Preferential Description Logics

    Get PDF
    In this work we describe preferential Description Logics of typicality, a nonmonotonic extension of standard Description Logics by means of a typicality operator T allowing to extend a knowledge base with inclusions of the form T(C) v D, whose intuitive meaning is that normally/typically Cs are also Ds. This extension is based on a minimal model semantics corresponding to a notion of rational closure, built upon preferential models. We recall the basic concepts underlying preferential Description Logics. We also present two extensions of the preferential semantics: on the one hand, we consider probabilistic extensions, based on a distributed semantics that is suitable for tackling the problem of commonsense concept combination, on the other hand, we consider other strengthening of the rational closure semantics and construction to avoid the so-called blocking of property inheritance problem.Comment: 17 pages. arXiv admin note: text overlap with arXiv:1811.0236

    Rational Defeasible Reasoning for Description Logics

    Get PDF
    In this paper, we extend description logics (DLs) with non-monotonic reasoning fea- tures. We start by investigating a notion of defeasible subsumption in the spirit of defeasible conditionals as studied by Kraus and colleagues in the propositional case. In particular, we consider a natural and intuitive semantics for defeasible subsumption, and we investi- gate syntactic properties (Ă  la Gentzen) for both preferential and rational subsumptions and prove representation results for the description logic ALC. Such representation results pave the way for more effective decision procedures for defeasible reasoning in DLs. We analyse the problem of non-monotonic reasoning in DL at the level of entailment for both TBox and ABox reasoning, and present an adaptation of rational closure for the DL en- vironment. Importantly, we also show that computing it can be reduced to classical ALC entailment. One of the stumbling blocks to evaluating performance scalability of rational closure is the absence of naturally occurring DL-based ontologies with defeasible features. We overcome this barrier by devising an approach to introduce defeasible subsumption into classical real-world ontologies. Such semi-natural defeasible ontologies, together with a purely artificial set, are used to test our rational closure algorithms. We found that performance is scalable on the whole with no major bottlenecks
    • …
    corecore