36 research outputs found

    Risk-based shutdown inspection and maintenance for a processing facility

    Get PDF
    In this research, a risk-based shutdown inspection and maintenance interval optimization for a processing facility is proposed. Often inspection and maintenance activities can’t be performed until the processing unit or plant is taken into a non-operational state, generally known as “shutdown”. Extensive work on inspection and maintenance interval estimation modeling is available in the concerned literature however, no to very limited application on shutdown inspection and maintenance modeling is observed for a continuous operating facility. Majority of the published literature deals to optimize individual equipment inspection and maintenance interval without considering the overall impact of plant unavailability due to shutdown. They all deal to optimize individual equipment inspection and maintenance interval considering cost, risk, availability and reliability. The efforts towards finding an optimal inspection and maintenance interval is not considered in these studies especially when it requires unit or plant to be in shutdown state from an operational state for performing inspection and maintenance. This topic is selected to bridge the existing gap in the available literature and to provide a means to develop a methodology to estimate the shutdown inspection and maintenance interval for a continuous processing unit or plant, rather an inspection and maintenance interval for each piece of equipment considering the overall asset availability, reliability and risk. A component failure due to wear or degradation is a major threat to asset failure in a processing facility. A carefully planned inspection and maintenance strategy not only mitigate the effects of age-based degradation and reduce the threat of failure but also minimize the risk exposure. Generally failure caused by wear or degradation is modeled as a stochastic process. For an effective inspection and maintenance strategy, the stochastic nature of failure has to be taken into consideration. The proposed methodology aims to minimize the risk of exposure considering effect of failure on human life, financial investment and environment by optimizing the interval of process unit shutdown. Risk-based shutdown inspection and maintenance optimization quantifies the risk to which individual equipment are subjected and uses this as a basis for the optimization of a shutdown inspection and maintenance strategy

    Plant Physiology, Development and Metabolism

    Get PDF
    Water is one of the most important constituents of life. Chemically, water is the hydride of oxygen. Oxygen, being more electronegative, exerts a strong attractive pull on its electrons. This unequal attraction results in small positive charge on twohydrogenmoleculesandasmallnegativechargeontheoxygenmolecule.The two lone pairs of electrons of the oxygen molecule result in bending of water molecule. The partial charges on oxygen and hydrogen molecules result in high electric dipole moment and polarity of water molecule

    Advanced Safety Methodology for Risk Management of Petroleum Refinery Operations

    Get PDF
    Petroleum refineries are important facilities for refining petroleum products that provide the primary source of energy for domestic and industrial consumption globally. Petroleum refinery operations provide significant contribution to global economic growth. Petroleum refineries are complex, multifaceted systems that perform multiple phase operations characterized by a high level of risk. Evidence based major accidents that have occurred within the last three decades in the petroleum refineries, around the world, indicates losses estimated in billions of US dollars. Many of these accidents are catastrophes, which have led to the disruption of petroleum refinery operations. These accidents have resulted in production loss, asset damage, environmental damage, fatalities and injuries. However, the foremost issue analysed in literatures in relation to major accidents in petroleum refineries, is the lack of robust risk assessment and resourceful risk management approaches to identify and assess major accident risks, in order to prevent or mitigate them from escalating to an accident. Thus, it is exceptionally critical to readdress the issue of petroleum refinery risk management with the development of a more dependable, adaptable and holistic risk modelling framework for major accident risks investigation. In this thesis, a proactive framework for advanced risk management to analyse and mitigate the disruption risks of petroleum refinery operations is presented. In this research, various risk elements and their attributes that can interact to cause the disruption of PRPU operations were identified and analysed, in order to determine their criticality levels. This thesis shows that the convergent effect of the interactions between the risk elements and their attributes can lead to the disruption of petroleum refinery operations. In the scheme of the study, Fuzzy Linguistic Preference Relation (FLPR), Fuzzy Evidential Reasoning (FER) and Fuzzy Bayesian Network (FBN) methodologies were proposed and implemented to evaluate the criticality of the risk elements and their attributes and to analyse the risk level of PRPU operations. Also, AHP-fuzzy VIKOR methodology was utilised for decision modelling to determine the optimal strategy for the risk management of the most significant risk elements’ attributes that can interact to cause the disruption of PRPU operations. The methodologies proposed and implemented in this research can be utilised in the petroleum refining industry, to analyse complex risk scenarios where there is incomplete information concerning risk events or where the probability of risk events is uncertain. The result of the analysis conducted in this research to determine the risk level of petroleum refinery operations can be utilised by risk assessors and decision makers as a threshold value for decision making in order to mitigate the disruption risk of PRPU operations. The decision strategies formulated in this thesis based on robust literature review and expert contributions, contributes to knowledge in terms of the risk management of petroleum refinery operations. The result of the evaluation and ranking of the risk elements and their attributes can provide salient risk information to duty holders and decision makers to improve their perceptions, in order to prioritise resources for risk management of the most critical attributes of the risk elements. Overall, the methodologies applied in this thesis, can be tailored to be utilised as a quantitative risk assessment tool, by risk managers and decision analysts in the petroleum refining industry for enhancement risk assessment processes where available information can sometimes be vague or incomplete for risk analysis

    Lignocellulosic Biomass

    Get PDF
    Recently, there has been a growing awareness of the need to make better use of natural resources. Hence, the utilization of biomass has led to so-called biorefinery, consisting of the fractionation or separation of the different components of the lignocellulosic materials in order to achieve a total utilization of the same, and not only of the cellulosic fraction for paper production. The use of plant biomass as a basic raw material implies a shift from an economy based on the exploitation of non-renewable fossil fuels, with limited reserves or with regeneration cycles far below the rates of exploitation, to a bioeconomy based on the use of renewable organic natural resources, with balanced regeneration and extraction cycles. To make this change, profound readjustments in existing technologies are necessary, as well as the application of new approaches in research, development, and production."Biorefinery" is the term used to describe the technology for the fractionation of plant biomass into energy, chemicals, and consumer goods. The future generation of biorefinery will include treatments, leading to high-value-added compounds. The use of green chemistry technologies and principles in biorefineries, such as solvent and reagent recovery and the minimization of effluent and gas emissions, is essential to define an economically and environmentally sustainable process.In particular, the biorefinery of lignocellulosic materials to produce biofuels, chemicals and materials is presented as a solid alternative to the current petrochemical platform and a possible solution to the accumulation of greenhouse gases

    The Palgrave Handbook of International Energy Economics

    Get PDF
    This open access handbook is distinguished by its emphasis on international energy, rather than domestic energy policies or international geopolitic aspects. Addressing key topics such as energy production and distribution, renewables and corporate energy structures, alongside global energy trends, regional case studies and emerging areas such as the digitalization of energy and energy transition, this handbook provides a major new contribution to the field of international energy economics. Written by academics, practitioners and policy-makers, this handbook is a valuable and timely addition to the literature on international energy economics. This book was published open access with the support of Eni
    corecore