630 research outputs found

    Utility Maximization for Uplink MU-MIMO: Combining Spectral-Energy Efficiency and Fairness

    Full text link
    Driven by green communications, energy efficiency (EE) has become a new important criterion for designing wireless communication systems. However, high EE often leads to low spectral efficiency (SE), which spurs the research on EE-SE tradeoff. In this paper, we focus on how to maximize the utility in physical layer for an uplink multi-user multiple-input multipleoutput (MU-MIMO) system, where we will not only consider EE-SE tradeoff in a unified way, but also ensure user fairness. We first formulate the utility maximization problem, but it turns out to be non-convex. By exploiting the structure of this problem, we find a convexization procedure to convert the original nonconvex problem into an equivalent convex problem, which has the same global optimum with the original problem. Following the convexization procedure, we present a centralized algorithm to solve the utility maximization problem, but it requires the global information of all users. Thus we propose a primal-dual distributed algorithm which does not need global information and just consumes a small amount of overhead. Furthermore, we have proved that the distributed algorithm can converge to the global optimum. Finally, the numerical results show that our approach can both capture user diversity for EE-SE tradeoff and ensure user fairness, and they also validate the effectiveness of our primal-dual distributed algorithm

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    A Generalized Cluster-Free NOMA Framework Towards Next-Generation Multiple Access

    Full text link
    A generalized downlink multi-antenna non-orthogonal multiple access (NOMA) transmission framework is proposed with the novel concept of cluster-free successive interference cancellation (SIC). In contrast to conventional NOMA approaches, where SIC is successively carried out within the same cluster, the key idea is that the SIC can be flexibly implemented between any arbitrary users to achieve efficient interference elimination. Based on the proposed framework, a sum rate maximization problem is formulated for jointly optimizing the transmit beamforming and the SIC operations between users, subject to the SIC decoding conditions and users' minimal data rate requirements. To tackle this highly-coupled mixed-integer nonlinear programming problem, an alternating direction method of multipliers-successive convex approximation (ADMM-SCA) algorithm is developed. The original problem is first reformulated into a tractable biconvex augmented Lagrangian (AL) problem by handling the non-convex terms via SCA. Then, this AL problem is decomposed into two subproblems that are iteratively solved by the ADMM to obtain the stationary solution. Moreover, to reduce the computational complexity and alleviate the parameter initialization sensitivity of ADMM-SCA, a Matching-SCA algorithm is proposed. The intractable binary SIC operations are solved through an extended many-to-many matching, which is jointly combined with an SCA process to optimize the transmit beamforming. The proposed Matching-SCA can converge to an enhanced exchange-stable matching that guarantees the local optimality. Numerical results demonstrate that: i) the proposed Matching-SCA algorithm achieves comparable performance and a faster convergence compared to ADMM-SCA; ii) the proposed generalized framework realizes scenario-adaptive communications and outperforms traditional multi-antenna NOMA approaches in various communication regimes.Comment: 30 pages, 9 figures, submitted to IEEE TW

    The Creation of Perceptually Optimized Sound Zones Using Variable Span Trade-Off Filters

    Get PDF

    Game Theory and Microeconomic Theory for Beamforming Design in Multiple-Input Single-Output Interference Channels

    Get PDF
    In interference-limited wireless networks, interference management techniques are important in order to improve the performance of the systems. Given that spectrum and energy are scarce resources in these networks, techniques that exploit the resources efficiently are desired. We consider a set of base stations operating concurrently in the same spectral band. Each base station is equipped with multiple antennas and transmits data to a single-antenna mobile user. This setting corresponds to the multiple-input single-output (MISO) interference channel (IFC). The receivers are assumed to treat interference signals as noise. Moreover, each transmitter is assumed to know the channels between itself and all receivers perfectly. We study the conflict between the transmitter-receiver pairs (links) using models from game theory and microeconomic theory. These models provide solutions to resource allocation problems which in our case correspond to the joint beamforming design at the transmitters. Our interest lies in solutions that are Pareto optimal. Pareto optimality ensures that it is not further possible to improve the performance of any link without reducing the performance of another link. Strategic games in game theory determine the noncooperative choice of strategies of the players. The outcome of a strategic game is a Nash equilibrium. While the Nash equilibrium in the MISO IFC is generally not efficient, we characterize the necessary null-shaping constraints on the strategy space of each transmitter such that the Nash equilibrium outcome is Pareto optimal. An arbitrator is involved in this setting which dictates the constraints at each transmitter. In contrast to strategic games, coalitional games provide cooperative solutions between the players. We study cooperation between the links via coalitional games without transferable utility. Cooperative beamforming schemes considered are either zero forcing transmission or Wiener filter precoding. We characterize the necessary and sufficient conditions under which the core of the coalitional game with zero forcing transmission is not empty. The core solution concept specifies the strategies with which all players have the incentive to cooperate jointly in a grand coalition. While the core only considers the formation of the grand coalition, coalition formation games study coalition dynamics. We utilize a coalition formation algorithm, called merge-and-split, to determine stable link grouping. Numerical results show that while in the low signal-to-noise ratio (SNR) regime noncooperation between the links is efficient, at high SNR all links benefit in forming a grand coalition. Coalition formation shows its significance in the mid SNR regime where subset link cooperation provides joint performance gains. We use the models of exchange and competitive market from microeconomic theory to determine Pareto optimal equilibria in the two-user MISO IFC. In the exchange model, the links are represented as consumers that can trade goods within themselves. The goods in our setting correspond to the parameters of the beamforming vectors necessary to achieve all Pareto optimal points in the utility region. We utilize the conflict representation of the consumers in the Edgeworth box, a graphical tool that depicts the allocation of the goods for the two consumers, to provide closed-form solution to all Pareto optimal outcomes. The exchange equilibria are a subset of the points on the Pareto boundary at which both consumers achieve larger utility then at the Nash equilibrium. We propose a decentralized bargaining process between the consumers which starts at the Nash equilibrium and ends at an outcome arbitrarily close to an exchange equilibrium. The design of the bargaining process relies on a systematic study of the allocations in the Edgeworth box. In comparison to the exchange model, a competitive market additionally defines prices for the goods. The equilibrium in this economy is called Walrasian and corresponds to the prices that equate the demand to the supply of goods. We calculate the unique Walrasian equilibrium and propose a coordination process that is realized by the arbitrator which distributes the Walrasian prices to the consumers. The consumers then calculate in a decentralized manner their optimal demand corresponding to beamforming vectors that achieve the Walrasian equilibrium. This outcome is Pareto optimal and lies in the set of exchange equilibria. In this thesis, based on the game theoretic and microeconomic models, efficient beamforming strategies are proposed that jointly improve the performance of the systems. The gained results are applicable in interference-limited wireless networks requiring either coordination from the arbitrator or direct cooperation between the transmitters

    SDN-enabled MIMO Heterogeneous Cooperative Networks with Flexible Cell Association

    Get PDF
    Accepted in IEEE TWCSmall-cell densification is a strategy enabling the offloading of users from macro base stations (MBSs), in order to alleviate their load and increase the coverage, especially, for cell-edge users. In parallel, as the network increases in density, the BS cooperation emerges as an efficient design method towards the demands for drastic improvement of the system performance against the detrimental overall interference. We, therefore, model and scrutinize a heterogeneous network (HetNet) of two tiers (macro and small cells) with multiple-antenna BSs serving a multitude of users, which differ with respect to their basic design parameters, e.g., the deployment density, the number of transmit antennas, and transmit power. In addition, the tiers are enhanced with cell association policies by introducing the concept of the association probability. Above this and motivated by the advantages of cooperation among BSs, the small base stations (SBSs) are enriched with this property in their design. The SBS cooperation allows shedding light into its impact on the cell selection rules in multi-antenna HetNets. Under these settings, software-defined networking (SDN) is introduced smoothly to play the leading role in the orchestration of the network. In particular, heavy operations such as the coordination and the cell association are undertaken by virtue of an SDN controller performing and managing efficiently the corresponding computations due to its centralized adaptability and dynamicity towards the enhancement and potential scalability of the network. In this context, we derive the coverage probability and the mean achievable rate. Not only we show the outperformance of BS cooperation over uncoordinated BSs, but we also demonstrate that the SBS cooperation enables the admittance of more users from the macro-cell BSs (MBSs). Furthermore, we show that by increasing the number of BS antennas, the system performance is improved as the metrics under study reveal. Moreover, we investigate the performance of different transmission techniques, and we identify the optimal bias in each case when SBSs cooperate. Finally, we depict that the SBS densification is beneficial until a specific density value since a further increase does not increase the coverage probability.Peer reviewedFinal Accepted Versio
    corecore