17,244 research outputs found

    User subscription-based resource management for Desktop-as-a-Service platforms

    Get PDF
    The Desktop-as-a-Service (DaaS) idiom consists of utilizing a cloud or other server infrastructure to host the user's desktop environment as a virtual desktop. Typical for cloud and DaaS services is the pay-as-you-go pricing model in combination with the availability of multiple subscription types to accommodate the needs of the users. However, optimal cost-efficient allocation of the virtual desktops to the infrastructure proves to be a combinatorial NP-hard problem, for which a heuristic is presented in the current article. We present a cost model for the DaaS service, from which a revenue of different configurations of virtual desktops to the servers can be derived. In this cost model, both subscription fee and penalties for degraded service are recorded, that are described in service-level agreements (SLAs) between the service provider and the users, and make realistic assumptions that different subscription types result in particular SLA contracts. The heuristic proposed states that for a given user base for which the virtual desktops (VDs) must be hosted, the VDs should be spread evenly over the infrastructure. Experiments through discrete event simulation show that this heuristic yields an approximation within 1 % of the theoretically achievable revenue

    A model of preference elicitation: The case of distributed resource allocation

    Get PDF
    Market mechanisms are deemed promising for distributed resource allocation settings by explicitly involving users into the allocation process. The market considers the users’ and providers’ valuations to generate efficient resource allocations and prices. In theory, valuations are assumed to be known to the user. In practice, however, this is not the case. It is a complex burden for both users and providers to assess their true valuation for a certain combination of resources and services and to efficiently communicate this valuation to the market. This paper contributes to the theory of designing distributed allocation models in that (i) we propose a model for preference elicitation, which allows users and providers to assess their valuations as a function of their resource requirements and strategic considerations, (ii) we show how this model can be encoded within so-called bidding agents which interact with the market on behalf of the user, and (iii) we evaluate our approach in a numerical experiment to illustrate how the bidding agent adapts to the dynamic market situation. As this evaluation shows, the model outperforms technical schedulers and can thus be used for decision support in electronic markets

    On the Design of Campus Parking Systems with QoS guarantees

    Get PDF
    Parking spaces are resources that can be pooled together and shared, especially when there are complementary day-time and night-time users. We answer two design questions. First, given a quality of service requirement, how many spaces should be set aside as contingency during day-time for night-time users? Next, how can we replace the first-come-first-served access method by one that aims at optimal efficiency while keeping user preferences private

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Data transfer scheduling with advance reservation and provisioning

    Get PDF
    Over the years, scientific applications have become more complex and more data intensive. Although through the use of distributed resources the institutions and organizations gain access to the resources needed for their large-scale applications, complex middleware is required to orchestrate the use of these storage and network resources between collaborating parties, and to manage the end-to-end processing of data. We present a new data scheduling paradigm with advance reservation and provisioning. Our methodology provides a basis for provisioning end-to-end high performance data transfers which require integration between system, storage and network resources, and coordination between reservation managers and data transfer nodes. This allows researchers/users and higher level meta-schedulers to use data placement as a service where they can plan ahead and reserve time and resources for their data movement operations. We present a novel approach for evaluating time-dependent structures with bandwidth guaranteed paths. We present a practical online scheduling model using advance reservation in dynamic network with time constraints. In addition, we report a new polynomial algorithm presenting possible reservation options and alternatives for earliest completion and shortest transfer duration. We enhance the advance network reservation system by extending the underlying mechanism to provide a new service in which users submit their constraints and the system suggests possible reservation requests satisfying users\u27 requirements. We have studied scheduling data transfer operation with resource and time conflicts. We have developed a new scheduling methodology considering resource allocation in client sites and bandwidth allocation on network link connecting resources. Some other major contributions of our study include enhanced reliability, adaptability, and performance optimization of distributed data placement tasks. While designing this new data scheduling architecture, we also developed other important methodologies such as early error detection, failure awareness, job aggregation, and dynamic adaptation of distributed data placement tasks. The adaptive tuning includes dynamically setting data transfer parameters and controlling utilization of available network capacity. Our research aims to provide a middleware to improve the data bottleneck in high performance computing systems
    corecore