1,994 research outputs found

    PAUSANIAS: Final activity report

    Get PDF
    Search engines, such as Google and Yahoo!, provide efficient retrieval and ranking of web pages based on queries consisting of a set of given keywords. Recent studies show that 20% of all Web queries also have location constraints, i.e., also refer to the location of a geotagged web page. An increasing number of applications support location-based keyword search, including Google Maps, Bing Maps, Yahoo! Local, and Yelp. Such applications depict points of interest on the map and combine their location with the keywords provided by the associated document(s). The posed queries consist of two conditions: a set of keywords and a spatial location. The goal is to find points of interest with these keywords close to the location. We refer to such a query as spatial-keyword query. Moreover, mobile devices nowadays are enhanced with built-in GPS receivers, which permits applications (such as search engines or yellow page services) to acquire the location of the user implicitly, and provide location-based services. For instance, Google Mobile App provides a simple search service for smartphones where the location of the user is automatically captured and employed to retrieve results relevant to her current location. As an example, a search for pizza results in a list of pizza restaurants nearby the user. In this research project, we studied how preference queries can be extended for supporting also keywords. To this end we first studied preference queries in order to establish techniques that can be extended for supporting keywords (Chapter 1). Moreover, we proposed Top-k Spatio-Textual Preference Queries and proposed a novel indexing scheme and two algorithms for supporting efficient query processing (Chapter 2). We also studied the problem of maximizing the influence of spatio-textual objects based on reverse top-k queries and keyword selection (Chapter 3). Finally, we analyze the properties of geotagged photos of Flickr, and propose novel location-aware tag recommendation methods (Chapter 4)

    Location- and keyword-based querying of geo-textual data: a survey

    Get PDF
    With the broad adoption of mobile devices, notably smartphones, keyword-based search for content has seen increasing use by mobile users, who are often interested in content related to their geographical location. We have also witnessed a proliferation of geo-textual content that encompasses both textual and geographical information. Examples include geo-tagged microblog posts, yellow pages, and web pages related to entities with physical locations. Over the past decade, substantial research has been conducted on integrating location into keyword-based querying of geo-textual content in settings where the underlying data is assumed to be either relatively static or is assumed to stream into a system that maintains a set of continuous queries. This paper offers a survey of both the research problems studied and the solutions proposed in these two settings. As such, it aims to offer the reader a first understanding of key concepts and techniques, and it serves as an “index” for researchers who are interested in exploring the concepts and techniques underlying proposed solutions to the querying of geo-textual data.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)Nanyang Technological UniversityThis research was supported in part by MOE Tier-2 Grant MOE2019-T2-2-181, MOE Tier-1 Grant RG114/19, an NTU ACE Grant, and the Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU) that is funded by the Singapore Government through the Industry Alignment Fund Industry Collaboration Projects Grant, and by the Innovation Fund Denmark centre, DIREC

    Towards Why-Not Spatial Keyword Top-k Queries:A Direction-Aware Approach

    Get PDF

    Top-k term publish/subscribe for geo-textual data streams

    Get PDF

    A novel user-centered design for personalized video summarization

    Get PDF
    In the past, several automatic video summarization systems had been proposed to generate video summary. However, a generic video summary that is generated based only on audio, visual and textual saliencies will not satisfy every user. This paper proposes a novel system for generating semantically meaningful personalized video summaries, which are tailored to the individual user's preferences over video semantics. Each video shot is represented using a semantic multinomial which is a vector of posterior semantic concept probabilities. The proposed system stitches video summary based on summary time span and top-ranked shots that are semantically relevant to the user's preferences. The proposed summarization system is evaluated using both quantitative and subjective evaluation metrics. The experimental results on the performance of the proposed video summarization system are encouraging

    Report on novel spatial-keyword search techniques

    Get PDF
    Nowadays an increasing amount of web-accessible information on spatial objects becomes available to the public every day. Apart from the spatial location of an object (e.g., a point of interest), additional descriptive information typically includes textual description as well as various ratings, often user generated. Modern applications employ spatio-textual queries, which take into account both the spatial location of an object and its textual similarity to retrieve the most relevant objects. However, existing applications provide a limited functionality to the users. For example, several meaningful queries cannot be expressed by existing approaches and motivate our novel prototype system. In the first chapter, we address this limitation by supporting ranked retrieval of objects of interest by taking into account the quality of facilities in their vicinity, but also their textual similarity to user defined keywords. In the second chapter, we analyze the properties of geotagged photos of Flickr, and propose novel location-aware tag recommendation methods. Both of the above techniques are novel spatial-keyword search methods

    FLATTEN: optical FLow-guided ATTENtion for consistent text-to-video editing

    Full text link
    Text-to-video editing aims to edit the visual appearance of a source video conditional on textual prompts. A major challenge in this task is to ensure that all frames in the edited video are visually consistent. Most recent works apply advanced text-to-image diffusion models to this task by inflating 2D spatial attention in the U-Net into spatio-temporal attention. Although temporal context can be added through spatio-temporal attention, it may introduce some irrelevant information for each patch and therefore cause inconsistency in the edited video. In this paper, for the first time, we introduce optical flow into the attention module in the diffusion model's U-Net to address the inconsistency issue for text-to-video editing. Our method, FLATTEN, enforces the patches on the same flow path across different frames to attend to each other in the attention module, thus improving the visual consistency in the edited videos. Additionally, our method is training-free and can be seamlessly integrated into any diffusion-based text-to-video editing methods and improve their visual consistency. Experiment results on existing text-to-video editing benchmarks show that our proposed method achieves the new state-of-the-art performance. In particular, our method excels in maintaining the visual consistency in the edited videos.Comment: Project page: https://flatten-video-editing.github.io
    corecore