498 research outputs found

    Topic-enhanced memory networks for personalised point-of-interest recommendation

    Get PDF
    Point-of-Interest (POI) recommender systems play a vital role in people's lives by recommending unexplored POIs to users and have drawn extensive attention from both academia and industry. Despite their value, however, they still suffer from the challenges of capturing complicated user preferences and fine-grained user-POI relationship for spatio-temporal sensitive POI recommendation. Existing recommendation algorithms, including both shallow and deep approaches, usually embed the visiting records of a user into a single latent vector to model user preferences: this has limited power of representation and interpretability. In this paper, we propose a novel topic-enhanced memory network (TEMN), a deep architecture to integrate the topic model and memory network capitalising on the strengths of both the global structure of latent patterns and local neighbourhood-based features in a nonlinear fashion. We further incorporate a geographical module to exploit user-specific spatial preference and POI-specific spatial influence to enhance recommendations. The proposed unified hybrid model is widely applicable to various POI recommendation scenarios. Extensive experiments on real-world WeChat datasets demonstrate its effectiveness (improvement ratio of 3.25% and 29.95% for context-aware and sequential recommendation, respectively). Also, qualitative analysis of the attention weights and topic modeling provides insight into the model's recommendation process and results.China Scholarship Council and Cambridge Trus

    A Diffusion model for POI recommendation

    Full text link
    Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods
    • …
    corecore