61,109 research outputs found

    What attracts vehicle consumers’ buying:A Saaty scale-based VIKOR (SSC-VIKOR) approach from after-sales textual perspective?

    Get PDF
    Purpose: The increasingly booming e-commerce development has stimulated vehicle consumers to express individual reviews through online forum. The purpose of this paper is to probe into the vehicle consumer consumption behavior and make recommendations for potential consumers from textual comments viewpoint. Design/methodology/approach: A big data analytic-based approach is designed to discover vehicle consumer consumption behavior from online perspective. To reduce subjectivity of expert-based approaches, a parallel Naïve Bayes approach is designed to analyze the sentiment analysis, and the Saaty scale-based (SSC) scoring rule is employed to obtain specific sentimental value of attribute class, contributing to the multi-grade sentiment classification. To achieve the intelligent recommendation for potential vehicle customers, a novel SSC-VIKOR approach is developed to prioritize vehicle brand candidates from a big data analytical viewpoint. Findings: The big data analytics argue that “cost-effectiveness” characteristic is the most important factor that vehicle consumers care, and the data mining results enable automakers to better understand consumer consumption behavior. Research limitations/implications: The case study illustrates the effectiveness of the integrated method, contributing to much more precise operations management on marketing strategy, quality improvement and intelligent recommendation. Originality/value: Researches of consumer consumption behavior are usually based on survey-based methods, and mostly previous studies about comments analysis focus on binary analysis. The hybrid SSC-VIKOR approach is developed to fill the gap from the big data perspective

    An Economic and Life Cycle Analysis of Regional Land Use and Transportation Plans, Research Report 11-25

    Get PDF
    Travel and emissions models are commonly applied to evaluate the change in passenger and commercial travel and associated greenhouse gas (GHG) emissions from land use and transportation plans. Analyses conducted by the Sacramento Area Council of Governments predict a decline in such travel and emissions from their land use and transportation plan (the “Preferred Blueprint” or PRB scenario) relative to a “Business-As-Usual” scenario (BAU). However, the lifecycle GHG effects due to changes in production and consumption associated with transportation and land use plans are rarely, if ever, conducted. An earlier study conducted by the authors, applied a spatial economic model (Sacramento PECAS) to the PRB plan and found that lower labor, transport, and rental costs increased producer and consumer surplus and production and consumption relative to the BAU. As a result, lifecycle GHG emissions from these upstream economic activities may increase. At the same time, lifecycle GHG emissions associated with the manufacture of construction materials for housing may decline due to a shift in the plan from larger luxury homes to smaller multi-family homes in the plan. To explore the net impact of these opposing GHG impacts, the current study used the economic production and consumption data from the PRB and BAU scenarios as simulated with the Sacramento PECAS model as inputs to estimate the change in lifecycle GHG emissions. The economic input-output lifecycle assessment model is applied to evaluate effects related to changes in economic production and consumption as well as housing construction. This study also builds on the findings from two previous studies, which suggest potential economic incentives for jurisdictional non-compliance with Sustainable Communities Strategies (SCSs) under Senate Bill 375 (also known as the “anti-sprawl” bill). SB 375 does not require local governments to adopt general plans that are consistent with the land use plans included in SCSs, and thus such incentives could jeopardize implementation of SCSs and achievement of GHG goals. In this study, a set of scenarios is simulated with the Sacramento PECAS model, in which multiple jurisdictions partially pursue the BAU at differing rates. The PRB is treated as a straw or example SCS. The scenarios are evaluated to understand how non-conformity may influence the supply of housing by type, and holding other factors constant, the geographic and income distribution of rents, wages, commute costs, and consumer surplus

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Optimal Rotational Load Shedding via Bilinear Integer Programming

    Full text link
    This paper addresses the problem of managing rotational load shedding schedules for a power distribution network with multiple load zones. An integer optimization problem is formulated to find the optimal number and duration of planned power outages. Various types of damage costs are proposed to capture the heterogeneous load shedding preferences of different zones. The McCormick relaxation along with an effective procedure feasibility recovery is developed to solve the resulting bilinear integer program, which yields a high-quality suboptimal solution. Extensive simulation results corroborate the merit of the proposed approach, which has a substantial edge over existing load shedding schemes.Comment: 6 pages, 11 figures. To appear at the conference of APSIPA ASC 201

    Mobile Edge Computing Empowers Internet of Things

    Full text link
    In this paper, we propose a Mobile Edge Internet of Things (MEIoT) architecture by leveraging the fiber-wireless access technology, the cloudlet concept, and the software defined networking framework. The MEIoT architecture brings computing and storage resources close to Internet of Things (IoT) devices in order to speed up IoT data sharing and analytics. Specifically, the IoT devices (belonging to the same user) are associated to a specific proxy Virtual Machine (VM) in the nearby cloudlet. The proxy VM stores and analyzes the IoT data (generated by its IoT devices) in real-time. Moreover, we introduce the semantic and social IoT technology in the context of MEIoT to solve the interoperability and inefficient access control problem in the IoT system. In addition, we propose two dynamic proxy VM migration methods to minimize the end-to-end delay between proxy VMs and their IoT devices and to minimize the total on-grid energy consumption of the cloudlets, respectively. Performance of the proposed methods are validated via extensive simulations
    corecore