1,905 research outputs found

    Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback

    Full text link
    Albeit, the implicit feedback based recommendation problem - when only the user history is available but there are no ratings - is the most typical setting in real-world applications, it is much less researched than the explicit feedback case. State-of-the-art algorithms that are efficient on the explicit case cannot be straightforwardly transformed to the implicit case if scalability should be maintained. There are few if any implicit feedback benchmark datasets, therefore new ideas are usually experimented on explicit benchmarks. In this paper, we propose a generic context-aware implicit feedback recommender algorithm, coined iTALS. iTALS apply a fast, ALS-based tensor factorization learning method that scales linearly with the number of non-zero elements in the tensor. The method also allows us to incorporate diverse context information into the model while maintaining its computational efficiency. In particular, we present two such context-aware implementation variants of iTALS. The first incorporates seasonality and enables to distinguish user behavior in different time intervals. The other views the user history as sequential information and has the ability to recognize usage pattern typical to certain group of items, e.g. to automatically tell apart product types or categories that are typically purchased repetitively (collectibles, grocery goods) or once (household appliances). Experiments performed on three implicit datasets (two proprietary ones and an implicit variant of the Netflix dataset) show that by integrating context-aware information with our factorization framework into the state-of-the-art implicit recommender algorithm the recommendation quality improves significantly.Comment: Accepted for ECML/PKDD 2012, presented on 25th September 2012, Bristol, U

    Weighted Random Walk Sampling for Multi-Relational Recommendation

    Full text link
    In the information overloaded web, personalized recommender systems are essential tools to help users find most relevant information. The most heavily-used recommendation frameworks assume user interactions that are characterized by a single relation. However, for many tasks, such as recommendation in social networks, user-item interactions must be modeled as a complex network of multiple relations, not only a single relation. Recently research on multi-relational factorization and hybrid recommender models has shown that using extended meta-paths to capture additional information about both users and items in the network can enhance the accuracy of recommendations in such networks. Most of this work is focused on unweighted heterogeneous networks, and to apply these techniques, weighted relations must be simplified into binary ones. However, information associated with weighted edges, such as user ratings, which may be crucial for recommendation, are lost in such binarization. In this paper, we explore a random walk sampling method in which the frequency of edge sampling is a function of edge weight, and apply this generate extended meta-paths in weighted heterogeneous networks. With this sampling technique, we demonstrate improved performance on multiple data sets both in terms of recommendation accuracy and model generation efficiency

    Relational Collaborative Filtering:Modeling Multiple Item Relations for Recommendation

    Get PDF
    Existing item-based collaborative filtering (ICF) methods leverage only the relation of collaborative similarity. Nevertheless, there exist multiple relations between items in real-world scenarios. Distinct from the collaborative similarity that implies co-interact patterns from the user perspective, these relations reveal fine-grained knowledge on items from different perspectives of meta-data, functionality, etc. However, how to incorporate multiple item relations is less explored in recommendation research. In this work, we propose Relational Collaborative Filtering (RCF), a general framework to exploit multiple relations between items in recommender system. We find that both the relation type and the relation value are crucial in inferring user preference. To this end, we develop a two-level hierarchical attention mechanism to model user preference. The first-level attention discriminates which types of relations are more important, and the second-level attention considers the specific relation values to estimate the contribution of a historical item in recommending the target item. To make the item embeddings be reflective of the relational structure between items, we further formulate a task to preserve the item relations, and jointly train it with the recommendation task of preference modeling. Empirical results on two real datasets demonstrate the strong performance of RCF. Furthermore, we also conduct qualitative analyses to show the benefits of explanations brought by the modeling of multiple item relations
    • …
    corecore