13,248 research outputs found

    System Architecture Design Using Multi-Criteria Optimization

    Get PDF
    System architecture is defined as the description of a complex system in terms of its functional requirements, physical elements and their interrelationships. Designing a complex system architecture can be a difficult task involving multi-faceted trade-off decisions. The system architecture designs often have many project-specific goals involving mix of quantitative and qualitative criteria and a large design trade space. Several tools and methods have been developed to support the system architecture design process in the last few decades. However, many conventional problem solving techniques face difficulties in dealing with complex system design problems having many goals. In this research work, an interactive multi-criteria design optimization framework is proposed for solving many-objective system architecture design problems and generating a well distributed set of Pareto optimal solutions for these problems. System architecture design using multi-criteria optimization is demonstrated using a real-world application of an aero engine health management (EHM) system. A design process is presented for the optimal deployment of the EHM system functional operations over physical architecture subsystems. The EHM system architecture design problem is formulated as a multi-criteria optimization problem. The proposed methodology successfully generates a well distributed family of Pareto optimal architecture solutions for the EHM system, which provides valuable insights into the design trade-offs. Uncertainty analysis is implemented using an efficient polynomial chaos approach and robust architecture solutions are obtained for the EHM system architecture design. Performance assessment through evaluation of benchmark test metrics demonstrates the superior performance of the proposed methodology

    06501 Abstracts Collection -- Practical Approaches to Multi-Objective Optimization

    Get PDF
    From 10.12.06 to 15.12.06, the Dagstuhl Seminar 06501 ``Practical Approaches to Multi-Objective Optimization\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    A new and efficient intelligent collaboration scheme for fashion design

    Get PDF
    Technology-mediated collaboration process has been extensively studied for over a decade. Most applications with collaboration concepts reported in the literature focus on enhancing efficiency and effectiveness of the decision-making processes in objective and well-structured workflows. However, relatively few previous studies have investigated the applications of collaboration schemes to problems with subjective and unstructured nature. In this paper, we explore a new intelligent collaboration scheme for fashion design which, by nature, relies heavily on human judgment and creativity. Techniques such as multicriteria decision making, fuzzy logic, and artificial neural network (ANN) models are employed. Industrial data sets are used for the analysis. Our experimental results suggest that the proposed scheme exhibits significant improvement over the traditional method in terms of the time–cost effectiveness, and a company interview with design professionals has confirmed its effectiveness and significance

    Multi-Criteria Performance Evaluation and Control in Power and Energy Systems

    Get PDF
    The role of intuition and human preferences are often overlooked in autonomous control of power and energy systems. However, the growing operational diversity of many systems such as microgrids, electric/hybrid-electric vehicles and maritime vessels has created a need for more flexible control and optimization methods. In order to develop such flexible control methods, the role of human decision makers and their desired performance metrics must be studied in power and energy systems. This dissertation investigates the concept of multi-criteria decision making as a gateway to integrate human decision makers and their opinions into complex mathematical control laws. There are two major steps this research takes to algorithmically integrate human preferences into control environments: MetaMetric (MM) performance benchmark: considering the interrelations of mathematical and psychological convergence, and the potential conflict of opinion between the control designer and end-user, a novel holistic performance benchmark, denoted as MM, is developed to evaluate control performance in real-time. MM uses sensor measurements and implicit human opinions to construct a unique criterion that benchmarks the system\u27s performance characteristics. MM decision support system (DSS): the concept of MM is incorporated into multi-objective evolutionary optimization algorithms as their DSS. The DSS\u27s role is to guide and sort the optimization decisions such that they reflect the best outcome desired by the human decision-maker and mathematical considerations. A diverse set of case studies including a ship power system, a terrestrial power system, and a vehicular traction system are used to validate the approaches proposed in this work. Additionally, the MM DSS is designed in a modular way such that it is not specific to any underlying evolutionary optimization algorithm

    Interactive Decomposition Multi-Objective Optimization via Progressively Learned Value Functions

    Get PDF
    Decomposition has become an increasingly popular technique for evolutionary multi-objective optimization (EMO). A decomposition-based EMO algorithm is usually designed to approximate a whole Pareto-optimal front (PF). However, in practice, the decision maker (DM) might only be interested in her/his region of interest (ROI), i.e., a part of the PF. Solutions outside that might be useless or even noisy to the decision-making procedure. Furthermore, there is no guarantee to find the preferred solutions when tackling many-objective problems. This paper develops an interactive framework for the decomposition-based EMO algorithm to lead a DM to the preferred solutions of her/his choice. It consists of three modules, i.e., consultation, preference elicitation and optimization. Specifically, after every several generations, the DM is asked to score a few candidate solutions in a consultation session. Thereafter, an approximated value function, which models the DM's preference information, is progressively learned from the DM's behavior. In the preference elicitation session, the preference information learned in the consultation module is translated into the form that can be used in a decomposition-based EMO algorithm, i.e., a set of reference points that are biased toward to the ROI. The optimization module, which can be any decomposition-based EMO algorithm in principle, utilizes the biased reference points to direct its search process. Extensive experiments on benchmark problems with three to ten objectives fully demonstrate the effectiveness of our proposed method for finding the DM's preferred solutions.Comment: 25 pages, 18 figures, 3 table
    corecore