472 research outputs found

    Towards Question-based Recommender Systems

    Get PDF
    Conversational and question-based recommender systems have gained increasing attention in recent years, with users enabled to converse with the system and better control recommendations. Nevertheless, research in the field is still limited, compared to traditional recommender systems. In this work, we propose a novel Question-based recommendation method, Qrec, to assist users to find items interactively, by answering automatically constructed and algorithmically chosen questions. Previous conversational recommender systems ask users to express their preferences over items or item facets. Our model, instead, asks users to express their preferences over descriptive item features. The model is first trained offline by a novel matrix factorization algorithm, and then iteratively updates the user and item latent factors online by a closed-form solution based on the user answers. Meanwhile, our model infers the underlying user belief and preferences over items to learn an optimal question-asking strategy by using Generalized Binary Search, so as to ask a sequence of questions to the user. Our experimental results demonstrate that our proposed matrix factorization model outperforms the traditional Probabilistic Matrix Factorization model. Further, our proposed Qrec model can greatly improve the performance of state-of-the-art baselines, and it is also effective in the case of cold-start user and item recommendations.Comment: accepted by SIGIR 202

    Seamlessly Unifying Attributes and Items: Conversational Recommendation for Cold-Start Users

    Full text link
    Static recommendation methods like collaborative filtering suffer from the inherent limitation of performing real-time personalization for cold-start users. Online recommendation, e.g., multi-armed bandit approach, addresses this limitation by interactively exploring user preference online and pursuing the exploration-exploitation (EE) trade-off. However, existing bandit-based methods model recommendation actions homogeneously. Specifically, they only consider the items as the arms, being incapable of handling the item attributes, which naturally provide interpretable information of user's current demands and can effectively filter out undesired items. In this work, we consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively. This important scenario was studied in a recent work. However, it employs a hand-crafted function to decide when to ask attributes or make recommendations. Such separate modeling of attributes and items makes the effectiveness of the system highly rely on the choice of the hand-crafted function, thus introducing fragility to the system. To address this limitation, we seamlessly unify attributes and items in the same arm space and achieve their EE trade-offs automatically using the framework of Thompson Sampling. Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play. Extensive experiments on three benchmark datasets show that ConTS outperforms the state-of-the-art methods Conversational UCB (ConUCB) and Estimation-Action-Reflection model in both metrics of success rate and average number of conversation turns.Comment: TOIS 202

    Enhancing User Personalization in Conversational Recommenders

    Full text link
    Conversational recommenders are emerging as a powerful tool to personalize a user's recommendation experience. Through a back-and-forth dialogue, users can quickly hone in on just the right items. Many approaches to conversational recommendation, however, only partially explore the user preference space and make limiting assumptions about how user feedback can be best incorporated, resulting in long dialogues and poor recommendation performance. In this paper, we propose a novel conversational recommendation framework with two unique features: (i) a greedy NDCG attribute selector, to enhance user personalization in the interactive preference elicitation process by prioritizing attributes that most effectively represent the actual preference space of the user; and (ii) a user representation refiner, to effectively fuse together the user preferences collected from the interactive elicitation process to obtain a more personalized understanding of the user. Through extensive experiments on four frequently used datasets, we find the proposed framework not only outperforms all the state-of-the-art conversational recommenders (in terms of both recommendation performance and conversation efficiency), but also provides a more personalized experience for the user under the proposed multi-groundtruth multi-round conversational recommendation setting.Comment: To Appear On TheWebConf (WWW) 202

    An investigation on the impact of natural language on conversational recommendations

    Get PDF
    In this paper, we investigate the combination of Virtual Assistants and Conversational Recommender Systems (CoRSs) by designing and implementing a framework named ConveRSE, for building chatbots that can recommend items from different domains and interact with the user through natural language. An user experiment was carried out to understand how natural language influences both the cost of interaction and recommendation accuracy of a CoRS. Experimental results show that natural language can indeed improve user experience, but some critical aspects of the interaction should be mitigated appropriately

    Comparative preferences induction methods for conversational recommenders

    Get PDF
    In an era of overwhelming choices, recommender systems aim at recommending the most suitable items to the user. Preference handling is one of the core issues in the design of recommender systems and so it is important for them to catch and model the user’s preferences as accurately as possible. In previous work, comparative preferences-based patterns were developed to handle preferences deduced by the system. These patterns assume there are only two values for each feature. However, real-world features can be multi-valued. In this paper, we develop preference induction methods which aim at capturing several preference nuances from the user feedback when features have more than two values. We prove the efficiency of the proposed methods through an experimental study

    Explainable Active Learning for Preference Elicitation

    Full text link
    Gaining insights into the preferences of new users and subsequently personalizing recommendations necessitate managing user interactions intelligently, namely, posing pertinent questions to elicit valuable information effectively. In this study, our focus is on a specific scenario of the cold-start problem, where the recommendation system lacks adequate user presence or access to other users' data is restricted, obstructing employing user profiling methods utilizing existing data in the system. We employ Active Learning (AL) to solve the addressed problem with the objective of maximizing information acquisition with minimal user effort. AL operates for selecting informative data from a large unlabeled set to inquire an oracle to label them and eventually updating a machine learning (ML) model. We operate AL in an integrated process of unsupervised, semi-supervised, and supervised ML within an explanatory preference elicitation process. It harvests user feedback (given for the system's explanations on the presented items) over informative samples to update an underlying ML model estimating user preferences. The designed user interaction facilitates personalizing the system by incorporating user feedback into the ML model and also enhances user trust by refining the system's explanations on recommendations. We implement the proposed preference elicitation methodology for food recommendation. We conducted human experiments to assess its efficacy in the short term and also experimented with several AL strategies over synthetic user profiles that we created for two food datasets, aiming for long-term performance analysis. The experimental results demonstrate the efficiency of the proposed preference elicitation with limited user-labeled data while also enhancing user trust through accurate explanations.Comment: Preprin

    Constructive Preference Elicitation over Hybrid Combinatorial Spaces

    Full text link
    Preference elicitation is the task of suggesting a highly preferred configuration to a decision maker. The preferences are typically learned by querying the user for choice feedback over pairs or sets of objects. In its constructive variant, new objects are synthesized "from scratch" by maximizing an estimate of the user utility over a combinatorial (possibly infinite) space of candidates. In the constructive setting, most existing elicitation techniques fail because they rely on exhaustive enumeration of the candidates. A previous solution explicitly designed for constructive tasks comes with no formal performance guarantees, and can be very expensive in (or unapplicable to) problems with non-Boolean attributes. We propose the Choice Perceptron, a Perceptron-like algorithm for learning user preferences from set-wise choice feedback over constructive domains and hybrid Boolean-numeric feature spaces. We provide a theoretical analysis on the attained regret that holds for a large class of query selection strategies, and devise a heuristic strategy that aims at optimizing the regret in practice. Finally, we demonstrate its effectiveness by empirical evaluation against existing competitors on constructive scenarios of increasing complexity.Comment: AAAI 2018, computing methodologies, machine learning, learning paradigms, supervised learning, structured output

    Towards Question-based Recommender Systems

    Get PDF
    corecore