13 research outputs found

    Formal methods for industrial critical systems, preface to the special section

    Full text link
    [EN] This special issue contains improved versions of selected papers from the workshops on Formal Methods for Industrial Critical Systems (FMICS) held in Eindhoven, The Netherlands, in November 2009 and in Antwerp, Belgium, in September 2010. These were, respectively, the 14th and 15th of a series of international workshops organized by an open working group supported by ERCIM (European Research Consortium for Informatics and Mathematics) that promotes research in all aspects of formal methods (see details in http://www.inrialpes.fr/vasy/fmics/). The FMICS workshops that have produced this special issue considered papers describing original, previously unpublished research and not simultaneously submitted for publication elsewhere, and dealing with the following themes: Design, specification, code generation and testing based on formal methods. Methods, techniques and tools to support automated analysis, certification, debugging, learning, optimization and transformation of complex, distributed, real-time and embedded systems. Verification and validation methods that address shortcomings of existing methods with respect to their industrial applicability (e.g., scalability and usability issues). Tools for the development of formal design descriptions. Case studies and experience reports on industrial applications of formal methods, focusing on lessons learned or new research directions. Impact and costs of the adoption of formal methods. Application of formal methods in standardization and industrial forums. The selected papers are the result of several evaluation steps. In response to the call for papers, FMICS 2009 received 24 papers and FMICS 2010 received 33 papers, with 10 and 14 accepted, respectively, which were published by Springer- Verlag in the series Lecture Notes in Computer Science (volumes 5825 [1] and 6371 [2]). Each paper was reviewed by at least three anonymous referees which provided full written evaluations. After the workshops, the authors of 10 papers were invited to submit extended journal versions to this special issue. These papers passed two review phases, and finally 7 were accepted to be included in the journal.his work has been partially supported by the EU (FEDER) and the Spanish MEC TIN2010-21062-C02-02 project, MICINN INNCORPORA-PTQ program, and by Generalitat Valenciana, ref. PROMETEO2011/052.Alpuente Frasnedo, M.; Joubert ., C.; Kowalewski, S.; Roveri, M. (2013). Formal methods for industrial critical systems, preface to the special section. Science of Computer Programming. 78(7):775-777. doi:10.1016/j.scico.2012.05.005S77577778

    An Ethics for the New (and Old) Surveillance

    Get PDF

    Code Generation from Pragmatics Annotated Coloured Petri Nets

    Get PDF

    Proceedings of SUMo and CompoNet 2011

    Get PDF
    International audienc

    TTSS'11 - 5th International Workshop on Harnessing Theories for Tool Support in Software

    Get PDF
    The aim of the workshop is to bring together practitioners and researchers from academia, industry and government to present and discuss ideas about: • How to deal with the complexity of software projects by multi-view modeling and separation of concerns about the design of functionality, interaction, concurrency, scheduling, and nonfunctional requirements, and • How to ensure correctness and dependability of software by integrating formal methods and tools for modeling, design, verification and validation into design and development processes and environments. • Case studies and experience reports about harnessing static analysis tools such as model checking, theorem proving, testing, as well as runtime monitoring

    Programming with Numerical Uncertainties

    Get PDF
    Numerical software, common in scientific computing or embedded systems, inevitably uses an approximation of the real arithmetic in which most algorithms are designed. In many domains, roundoff errors are not the only source of inaccuracy and measurement as well as truncation errors further increase the uncertainty of the computed results. Adequate tools are needed to help users select suitable approximations (data types and algorithms) which satisfy their accuracy requirements, especially for safety- critical applications. Determining that a computation produces accurate results is challenging. Roundoff errors and error propagation depend on the ranges of variables in complex and non-obvious ways; even determining these ranges accurately for nonlinear programs poses a significant challenge. In numerical loops, roundoff errors grow, in general, unboundedly. Finally, due to numerical errors, the control flow in the finite-precision implementation may diverge from the ideal real-valued one by taking a different branch and produce a result that is far-off of the expected one. In this thesis, we present techniques and tools for automated and sound analysis, verification and synthesis of numerical programs. We focus on numerical errors due to roundoff from floating-point and fixed-point arithmetic, external input uncertainties or truncation errors. Our work uses interval or affine arithmetic together with Satisfiability Modulo Theories (SMT) technology as well as analytical properties of the underlying mathematical problems. This combination of techniques enables us to compute sound and yet accurate error bounds for nonlinear computations, determine closed-form symbolic invariants for unbounded loops and quantify the effects of discontinuities on numerical errors. We can furthermore certify the results of self-correcting iterative algorithms. Accuracy usually comes at the expense of resource efficiency: more precise data types need more time, space and energy. We propose a programming model where the scientist writes his or her numerical program in a real-valued specification language with explicit error annotations. It is then the task of our verifying compiler to select a suitable floating-point or fixed-point data type which guarantees the needed accuracy. Sometimes accuracy can be gained by simply re-arranging the non-associative finite-precision computation. We present a scalable technique that searches for a more optimal evaluation order and show that the gains can be substantial. We have implemented all our techniques and evaluated them on a number of benchmarks from scientific computing and embedded systems, with promising results

    Proceedings of the Second NASA Formal Methods Symposium

    Get PDF
    This publication contains the proceedings of the Second NASA Formal Methods Symposium sponsored by the National Aeronautics and Space Administration and held in Washington D.C. April 13-15, 2010. Topics covered include: Decision Engines for Software Analysis using Satisfiability Modulo Theories Solvers; Verification and Validation of Flight-Critical Systems; Formal Methods at Intel -- An Overview; Automatic Review of Abstract State Machines by Meta Property Verification; Hardware-independent Proofs of Numerical Programs; Slice-based Formal Specification Measures -- Mapping Coupling and Cohesion Measures to Formal Z; How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project; A Machine-Checked Proof of A State-Space Construction Algorithm; Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications; Modeling Regular Replacement for String Constraint Solving; Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol; Can Regulatory Bodies Expect Efficient Help from Formal Methods?; Synthesis of Greedy Algorithms Using Dominance Relations; A New Method for Incremental Testing of Finite State Machines; Verification of Faulty Message Passing Systems with Continuous State Space in PVS; Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking; A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover; SimCheck: An Expressive Type System for Simulink; Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness; Software Model Checking of ARINC-653 Flight Code with MCP; Evaluation of a Guideline by Formal Modelling of Cruise Control System in Event-B; Formal Verification of Large Software Systems; Symbolic Computation of Strongly Connected Components Using Saturation; Towards the Formal Verification of a Distributed Real-Time Automotive System; Slicing AADL Specifications for Model Checking; Model Checking with Edge-valued Decision Diagrams; and Data-flow based Model Analysis

    Verification of Stochastic Process Calculi

    Get PDF
    corecore