12,486 research outputs found

    A Computable Economist’s Perspective on Computational Complexity

    Get PDF
    A computable economist's view of the world of computational complexity theory is described. This means the model of computation underpinning theories of computational complexity plays a central role. The emergence of computational complexity theories from diverse traditions is emphasised. The unifications that emerged in the modern era was codified by means of the notions of efficiency of computations, non-deterministic computations, completeness, reducibility and verifiability - all three of the latter concepts had their origins on what may be called 'Post's Program of Research for Higher Recursion Theory'. Approximations, computations and constructions are also emphasised. The recent real model of computation as a basis for studying computational complexity in the domain of the reals is also presented and discussed, albeit critically. A brief sceptical section on algorithmic complexity theory is included in an appendix

    Editorial Preface - JAIS Special Issue on Ontologies in the Context of Information Systems.

    Get PDF
    Ontologies, in the information systems context, deal with the structures of the world about which an information system informs, or to which it responds based on changes in that world. Ontologies are fundamental for system interoperability and integration; for increasing intelligence, flexibility, and reasoning around system responses and behaviors; for negotiating the meanings of the data in the system; and for innovating with new business models. Their importance has grown with the rise of enterprise systems, the semantic web, knowledge management systems, and new forms of value system integration, among other factors. This special issue of Journal of the Association of Information Systems (JAIS) on Ontologies in the Context of Information Systems contains three papers presenting contributions to the theory, domain knowledge, and methodologies for applying ontologies in the Information System (IS) field

    Sofia A. Yanovskaya: The Marxist Pioneer of Mathematical Logic in the Soviet Union

    Get PDF
    K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematical logic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern mathematics and their interpretation. Concomitantly, she was one of the pioneers of mathematical logic in the Soviet Union, in an era of fierce disputes on its compatibility with Marxist philosophy. Yanovskaya managed to embrace in an originally Marxist spirit the contemporary level of logico-philosophical research of her time. Due to her highly esteemed status within Soviet academia, she became one of the most significant pillars for the culmination of modern mathematics in the Soviet Union. In this paper, I attempt to trace the influence of the complex socio-cultural context of the first decades of the Soviet Union on Yanovskaya’s work. Among the several issues I discuss, her encounter with L. Wittgenstein is striking

    Agent-Based Computational Modeling And Macroeconomics

    Get PDF
    Agent-based Computational Economics (ACE) is the computational study of economic processes modeled as dynamic systems of interacting agents. This essay discusses the potential use of ACE modeling tools for the study of macroeconomic systems. Points are illustrated using an ACE model of a two-sector decentralized market economy. Related work can be accessed here: http://www.econ.iastate.edu/tesfatsi/amulmark.htmagent-based computational economics

    Reflections on Mathematical Economics in the Algorithmic Mode

    Get PDF
    Non-standard analysis can be harnessed by the recursion theorist. But as a computable economist, the conundrums of the Löwenheim-Skolem theorem and the associated Skolem paradox, seem to pose insurmountable epistemological difficulties against the use of algorithmic non-standard analysis. Discontinuities can be tamed by recursive analysis. This particular kind of taming may be a way out of the formidable obstacles created by the difficulties of Diophantine Decision Problems. Methods of existence proofs, used by the classical mathematician - even if not invoking the axiom of choice - cannot be shown to be equivalent to the exhibition of an instance in the sense of a constructive proof. These issues were prompted by the fertile and critical contributions to this special issue.

    Functional Structure and Approximation in Econometrics (book front matter)

    Get PDF
    This is the front matter from the book, William A. Barnett and Jane Binner (eds.), Functional Structure and Approximation in Econometrics, published in 2004 by Elsevier in its Contributions to Economic Analysis monograph series. The front matter includes the Table of Contents, Volume Introduction, and Section Introductions by Barnett and Binner and the Preface by W. Erwin Diewert. The volume contains a unified collection and discussion of W. A. Barnett's most important published papers on applied and theoretical econometric modelling.consumer demand, production, flexible functional form, functional structure, asymptotics, nonlinearity, systemwide models

    A Computable Economist’s Perspective on Computational Complexity

    Get PDF
    A computable economist.s view of the world of computational complexity theory is described. This means the model of computation underpinning theories of computational complexity plays a central role. The emergence of computational complexity theories from diverse traditions is emphasised. The unifications that emerged in the modern era was codified by means of the notions of efficiency of computations, non-deterministic computations, completeness, reducibility and verifiability - all three of the latter concepts had their origins on what may be called "Post's Program of Research for Higher Recursion Theory". Approximations, computations and constructions are also emphasised. The recent real model of computation as a basis for studying computational complexity in the domain of the reals is also presented and discussed, albeit critically. A brief sceptical section on algorithmic complexity theory is included in an appendix.
    • 

    corecore